Grade 6 Ch 1 Notes ~Holt

You may have to provide more examples.
You will have to supply problems for guided practice.

Objective- The students will be able to compare, round, and estimate using Whole Numbers.

Whole Numbers - $\{0,1,2,3,4, \ldots\}$
All numbers in base 10 are made up of 10 digits; $0,1,2,3,4,5,6,7,8$, and 9 . The value of a digit depends up its placement within a number - place value.

In base 10 , we have columns; $\underline{100,000} \underline{10,000}, \underline{1000}, \underline{100}, \underline{10}, \underline{1}$

The digit's value is determined by the specific column in which it is located. The 5 in the following two numbers have different values.

Ex. 53 , the 5 has the value of 5 tens or 50
Ex. 1,548 , the 5 has the value of 5 hundreds or 500

Writing a Number in Expanded Notation

To write a number in expanded notation, you write each digit as a product of that digit and it's place value and find their sum.

Ex. Write 73 in expanded notation.

$$
7(10)+3(1)
$$

Ex Write 543 in expanded notation

$$
5(100)+4(10)+3(1)
$$

Ex. Write 1,207 in expanded notation

$$
1(1000)+2(100)+0(10)+7(1)
$$

Writing a Number in Word Form

Ex. Write in word form, 73
Seventy-three
Ex. Write in word form, 705
Seven hundred five
Ex. Write in word form, 2,356
Two thousand three hundred fifty-six

Symbols for "less than" or "greater than"

The symbol " $<$ " means less than in mathematics. To say 4 is less than 5, we would write $4<5$.

The symbol " $>$ " means greater than in mathematics. To say 12 is greater than 8 , we would write $12>8$.

HINT - \quad The point of the sign is always aimed at the smaller number

Ex. Use " $<$ " or " $>$ " to compare the following numbers.
a. 567 _ 871
b. $352 _107$

Ex. List the following numbers from least to greatest.
a. $\quad 176,384,235,87$
b. $2123,2078,2055$

Rounding Numbers

To round a number, look at the digit to the right of the place you are rounding.
a. if that digit is 5 or more - round up.
b. If that digit is less than 5 , round down

Ex. Round to the nearest hundred.
a. 4,321
b. 5,786
c. $\quad 782$

Ex. Round to the nearest 1000
a. 4,321
b. 5,786
c. $\quad 782$

Objective- The students will be able to compute and write numbers in exponential notation.

Exponent tells how many times the base is used as a factor.

In the number 2^{3}, read 2 to the third power or 2 cubed, the 2 is called the base and the 3 is called the exponent.

$$
\begin{array}{ll}
\text { Ex. } & 2^{3}=2 \times 2 \times 2 \\
\text { Ex. } & 5^{2}=5 \times 5 \\
\text { Ex. } & 6^{4}=6 \times 6 \times 6 \times 6
\end{array}
$$

To write an exponential in standard form, compute the products. i.e. $5^{2}=5 \times 5=25$ 25 is written in standard form.

Special Case

$$
\text { Ex. } \quad \begin{aligned}
10 & =10 \\
10^{2} & =100 \\
10^{3} & =1,000 \\
10^{4} & =10,000 \\
& \\
& 10^{6}
\end{aligned}=1,000,000 ~ \$
$$

Do you see a pattern that would allow you to find the value of an exponential with base 10 quickly?

Objective- The students will be able to evaluate an expression using the Order of Operations and the Properties of Real Numbers.

The Order of Operations is just an agreement to compute problems the same way so everyone gets the same result - like wearing a wedding ring, driving on the right side of the road or listing sporting events.

Order of Operations

1. Parentheses
2. Exponents
3. Multiply/Divide from left to right
4. Add/Subtract from left to right

Ex. Evaluate the following expressions.
a. $3+5 \times 2$
b. $4+24 \div 6 \times 2+1$
c. $\quad 8 \div(1+3) \times 5^{2}-2$

Properties of Real Numbers

The properties of real numbers are rules used to simplify expressions and compute numbers more readily.

Commutative Property - Addition
Commutative Property - Multiplication
Ex. $\quad 4+5=5+4$
Ex. $\quad 10 \times 7=7 \times 10$

Associative Property - Addition
$(a+b)+c=a+(b+c) \quad$ GROUPING
$(a \times b) \times c=a x(b \times c)$
ORDER
$\mathrm{ax} b=\mathrm{b} \times \mathrm{a}$

Associative Property - Multiplication

Ex. $(7+8)+2=7+(8+2)$
Ex $\quad(13 \times 25) \times 4=13 \times(25 \times 4)$

Distributive Property $\quad a \times(b+c)=a \times b+a \times c \quad$ Distribute $\underline{\text { OVER-add/sub }}$

$$
\text { Ex. } \quad \begin{aligned}
5 \times 23 & =5 \times(20+3) \\
& =5 \times 20+5 \times 3 \\
& =100+15 \\
& =115 \\
\text { Ex. } \quad 25 \times 12 & =25 \times(10+2) \\
& =25 \times 10+25 \times 2 \\
& =250+50 \\
& =300
\end{aligned}
$$

Objective - \quad Students will be able to identify patterns and find the missing terms of sequences.

Sequence- a set of numbers in a particular order. Each number is called a term of the sequence.

Arithmetic Sequence - is a sequence in which every term after the first is obtained by adding a fixed number.

Ex. $\quad 5,10,15,20,25, \ldots$
Ex. $\quad 2,7,12,17,22, \ldots$
Ex. $\quad 3,11,19,27,35, \ldots$

A strategy to use to find the next term in a sequence is to subtract the terms, notice $11-3=8,19-11=8,27-19=8$. That would suggest you are adding 8 to each term to find the next term.

