Why does the ac Method of factoring work?

When factoring trinomials with a leading coefficient of one, we found a pattern that allowed us to factor the trinomial quickly. That is; we found factors of \boldsymbol{c} whose sum was \boldsymbol{b}, then we used those numbers to factor the trinomial.

We see a similar pattern when working with trinomials, $a=1, a \neq 1$, and binomials (difference of two squares).

Given a factorable trinomial $a \mathbf{x}^{2}+b \mathbf{x}+c, a \neq 1$, factors into $(d x+f)(e x+g)$

Expanding

$$
a \mathrm{x}^{2}+b \mathrm{x}+c=(d \mathrm{x}+f)(e \mathrm{x}+g)
$$

By the Transitive Property,

$$
(d \mathrm{x}+f)(e \mathrm{x}+g)=d e \mathrm{x}^{2}+d g x+e f \mathrm{x}+f g
$$

$$
a \mathrm{x}^{2}+b \mathrm{x}+c=d e \mathrm{x}^{2}+d g x+e f \mathrm{x}+f g
$$

We can see $a=d e, c=f g$. and $b=d g+e f$
Notice, the coefficient of the linear term, b, is made up of those same factors (d, e, f, g) as the product of $a c=\operatorname{defg}$

So by multiplying $a c$ in a trinomial, then using the factors of $a c$ whose sum is b, that allows us to rewrite the linear term of the polynomial as a sum of two linear terms.

Example \quad Factor $15 x^{2}+11 x+2$
Multiply ac, 15(2) = 30
Find factors of 30 whose sum is 11 , that is 6 and 5
Rewriting $\quad 15 x^{2}+11 x+2=15 x^{2}+6 x+5 x+2$
Factor by grouping $\quad=\underline{15 x^{2}+6 x}+\underline{5 x+2}$

$$
=3 x(5 x+2)+1(5 x+2)
$$

$$
=(5 x+2)(3 x+1)
$$

This pattern also works when $a=1$ and when factoring the difference of two squares.

