Parallel and Perpendicular Lines

1. Define parallel lines.
2. If the slope of a line is $\frac{2}{3}$, what is the slope of a line parallel to it?
A. $\frac{2}{3}$
B. $-\frac{2}{3}$
C. $-\frac{3}{2}$
D. $\frac{3}{2}$
3. Given points $A(7,5)$ and $B(2,1)$, find the slope of the line perpendicular to $\overline{A B}$.
4. Given points $A(4,5)$ and $B(2,1)$, find the slope of the line perpendicular to $\overline{A B}$.
5. Find the equation of a line parallel to $y=\frac{2}{3} x+7$ passing through $(6,3)$.
6. Find the equation of a line perpendicular $y=\frac{2}{3} x+7$ passing through $(6,3)$.
7. Given the rectangular solid.

Identify a pair of parallel lines.
A. $\overrightarrow{A B}$ and $\overrightarrow{E H}$
B. $\overrightarrow{B C}$ and $\overrightarrow{E H}$
C. $\overrightarrow{D H}$ and $\overrightarrow{H G}$
D. $\overrightarrow{B F}$ and $\overrightarrow{A D}$
8. Given the rectangular solid.

Identify a pair of perpendicular lines.
A. $\overrightarrow{A B}$ and $\overrightarrow{E H}$
B. $\overrightarrow{B C}$ and $\overrightarrow{E H}$
C. $\overrightarrow{D H}$ and $\overrightarrow{H G}$
D. $\overrightarrow{B F}$ and $\overrightarrow{A D}$
9. $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are coplanar. Given the coordinates of the points are $A(2,6)$, $B(6,2), C(-3,4), D(4,-3)$, are $\overrightarrow{A B}$ and $\overrightarrow{C D}$ parallel, perpendicular, skew, or none of these? Explain your answer.

Parallel and Perpendicular Lines

~ 2 ~
10. Determine whether the given lines are parallel, perpendicular, or neither. $-3 x+4 y=12$ and $4 x+3 y=12$.
11. Define perpendicular lines.
12. A parallelogram is defined as a quadrilateral with both pair of opposite sides parallel. Determine if a quadrilateral with vertices, $M(8,4), M(5,0), O(0,0)$, and $P(3,4)$ is a parallelogram. Could it be a rectangle?
14. Given: $\angle 1$ supp. to $\angle 2$; $\angle 1 \cong \angle 2$

Prove: $\overline{A B} \perp \overline{C D}$

15. Given: A right triangle has one set of perpendicular lines.
Prove: $\triangle A B C$ is a right triangle.

