Ch. Y1 Solutions of Triangles

We have studied right triangle trigonometry and learned how to find sides and angles of right triangles. Well, a question that one might ask is what happens when we want to find sides or angles of triangles that are not right triangles. An oblique triangle is a triangle that does not contain a right triangle.

Good news, we can always divide an oblique triangle into right triangles. But, that can be a little cumbersome. So, we will use our knowledge of right triangles and develop some relationships that will work for oblique triangles.

Law of Sines

If two angles and a side of a triangle are known, or if two sides and an angle opposite one of them is known, then the remaining parts can be found.

Given $\triangle \mathrm{ABC}$, construct an altitude (h), from $\angle \mathrm{B}$ to $\overline{A C}$

Drawing the altitude forms 2 right triangles. Using $\sin \mathrm{A}=\frac{o p p}{h y p}$,
 we have

$$
\sin \mathrm{C}=\frac{h}{a} \quad \text { and the } \quad \sin \mathrm{A}=\frac{h}{c}
$$

Solving both equations for h ,

$$
h=a \sin \mathrm{C} \quad \text { and } \quad h=c \sin \mathrm{~A}
$$

Using substitution

$$
a \sin \mathrm{C}=c \sin \mathrm{~A}
$$

Divide both sides by $(\sin \mathrm{C})(\sin \mathrm{A})$

$$
\frac{a}{\sin A}=\frac{c}{\sin C}
$$

Using the same $\triangle \mathrm{ABC}$, construct an altitude h_{1} from $\angle \mathrm{C}$ to $\overline{A B}$
Go through the same process for the right triangles formed. Note $h \neq h_{1}$

$$
\sin \mathrm{A}=\frac{h_{1}}{b} \quad \sin \mathrm{~B}=\frac{h_{1}}{a}
$$

Solving for $h_{l} \quad \boldsymbol{h}_{1}=\mathbf{b} \sin \mathbf{A} \quad$ and $\quad \boldsymbol{h}_{I}=\mathbf{a} \sin \mathbf{B}$
Using substitution $\quad \mathbf{b} \sin \mathbf{A}=\mathbf{a} \sin \mathbf{B}$
Divide both sides by $(\sin \mathrm{A})(\sin \mathrm{B})$
We have already shown that $\frac{b}{\sin B}=\frac{a}{\sin A}$, so using the Transitive Property we have

$$
\frac{b}{\sin B}=\frac{c}{\sin C}
$$

That gives us the Law of Sines

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

The ratio of any side of a triangle to the sine of the opposite angle is a constant.
As we said earlier, we use the Law of Sines under a a couple of conditions
A) If two angles and a side of a triangle are known
B) If two sides and an angle opposite one of them are known

Example $1 \quad$ Given the $\triangle \mathrm{ABC}$, find b.

Using the Law of Sines

$$
\frac{23}{\sin 59^{\circ}}=\frac{b}{\sin 82^{\circ}}
$$

$$
\begin{aligned}
b \sin 59^{\circ} & =23 \sin 82^{\circ} \quad(\text { look up values for sine }) \\
b(.86) & \approx 23(.99) \\
b & \approx 26.5
\end{aligned}
$$

Law of Cosines

If two sides and the included angle or if three sides of a triangle are given, the Law of Sines can not be applied directly.

Given $\triangle \mathrm{ABC}$, construct an altitude (h), from $\angle \mathrm{B}$ to $\overline{A C}$. That altitude forms two right triangles that allows us to use the trig.

$$
\begin{gathered}
\sin C=\frac{h}{a} \quad \text { or } \quad h=a \sin C \\
\cos C=\frac{a d j}{h y p} \rightarrow \quad \cos C=\frac{C D}{a} \\
\therefore C D=a \cos C
\end{gathered}
$$

By the diagram $\mathrm{AC}=\mathrm{b}$ and we just found that $\mathrm{CD}=\mathrm{a} \cos \mathrm{C}$, then

$$
\mathrm{AD}=\mathbf{b}-a \cos C
$$

We will use that information to relabel our triangle $\triangle \mathrm{ABC}$

$\triangle \mathrm{BDA}$ is a right triangle, we can use the
Pythagorean Theorem to write an equation

$$
(a \sin C)^{2}+(b-a \cos C)^{2}=c^{2}
$$

Squaring the binomial - underlined

$$
a^{2} \sin ^{2} C+\underline{b^{2}-2 a b \cos C+a^{2} \cos ^{2} C}=c^{2}
$$

Rewriting the equation using the Commutative and associative properties that will result in a trig identity

$$
a^{2} \sin ^{2} C+a^{2} \cos ^{2} C+b^{2}-2 a b \cos C=c^{2}
$$

Factoring a^{2} out of the first two terms

$$
a^{2}\left(\sin ^{2} C+\cos ^{2} C\right)+b^{2}-2 a b \cos C=c^{2}
$$

Substituting 1 for $\sin ^{2} \mathrm{C}+\cos ^{2} \mathrm{C}$

$$
\begin{gathered}
a^{2}(1)+b^{2}-2 a b \cos C=c^{2} \\
a^{2}+b^{2}-2 a b \cos C=c^{2} \\
\text { OR }
\end{gathered}
$$

Law of Cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

In any triangle the square of a side equals the sum of the squares of the other two sides decreased by twice the product of those sides and the cosine of the included angle.

$$
\begin{aligned}
& \mathbf{a}^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B
\end{aligned}
$$

Example 2
Given $\triangle \mathrm{ABC}$, find the value of a.

Using the Law of Cosines

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A} \\
& a^{2}=10^{2}+15^{2}-2(10)(15) \frac{\sqrt{3}}{2} \\
& a^{2} \approx 100+225-300(.86) \\
& a^{2} \approx 325-258 \\
& a^{2} \approx 67 \\
& a \approx 8.2
\end{aligned}
$$

Example 3
Given three sides of a $\Delta, a=15, b=17$, and $c=19$, find $m \angle \mathrm{C}$, the side opposite side c.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& 19^{2}=15^{2}+17^{2}-2(15)(17) \cos \mathrm{C} \\
& 361=225+289-510 \cos \mathrm{C} \\
& 361=514-510 \cos \mathrm{C} \\
& -153=-510 \cos \mathrm{C} \\
& -153 /-510=\cos \mathrm{C} \\
& 0.3 \approx \cos \mathrm{C} \\
& 73^{\circ} \approx \angle \mathrm{C}
\end{aligned}
$$

Area of a Triangle

Let's use $\triangle \mathrm{ABC}$, and the area formula for a triangle; $\mathrm{A}=\frac{1}{2} b h$

$$
\sin C=\frac{h}{a} \rightarrow h=a \sin C
$$

$$
\text { Area }_{\Delta}=\frac{1}{2}(A C) h
$$

$$
\begin{aligned}
& \text { Area }_{\Delta}=\frac{1}{2}(b) a \sin C \\
& \text { Area }_{\Delta}=\frac{1}{2} a b \sin C
\end{aligned}
$$

