Ch. 06 Basic Constructions

Construction 1 Given a segment, construct a congruent segment.

A

Steps

1. Draw a line $\overrightarrow{A B}$
2. Using a compass with X as the center, construct an arc intersecting $\overline{X Y}$ at Y
3. On the line $\overrightarrow{A B}$, using the compass with A as the center, construct the same arc and label the point of intersection B.

Construction 2 Given a segment, construct a perpendicular bisector.

Steps

1. Using a compass with a radius greater than $1 / 2 \overleftrightarrow{A B}$ construct two arcs (above \& below line segment) having A as center and two arcs having B as center
2. Label the points of intersection X and Y
3. Draw line $\overrightarrow{X Y}$
$\triangle \mathrm{AXY} \cong \triangle \mathrm{BXY}$ and $\triangle \mathrm{AXB} \cong \triangle \mathrm{AYB}$ by SSS , then $\angle \mathrm{XMB} \cong \angle \mathrm{XMA}$ and $\overline{A M} \cong \overline{M B} . \angle \mathrm{XMB}$ and $\angle \mathrm{XMA}$ are congruent adjacent angles, therefore they form perpendicular lines and since $\overline{A M} \cong \overline{M B}, \mathrm{M}$ is the midpoint so by definition a bisector,

The next two constructions are based on the previous construction of a perpendicular bisector of a segment. What we do in the following two constructions is make a new line segment using the intersection of the arcs and the given line segment, then construct a perpendicular bisector as we just did.

Construction 3 Given a point on a line, construct a line perpendicular to the line through that point.

Steps

1. Using P as the center, construct two arcs, one on each side of P . Label the points of intersection as A and B .
Now use the steps for constructing a \perp bisector
2. Using a compass with a radius greater than $1 / 2 \overrightarrow{A B}$ construct two arcs (above \& below line segment) having A as center and two arcs having B as center
3. Label the points of intersection X and Y
4. Draw line $\overrightarrow{X Y}$

Justification
When $\overline{A X}$ and $\overline{B X}$ are drawn, then $\triangle \mathrm{APX} \cong \triangle \mathrm{BPX}$ by SSS. By cpctc, $\angle \mathrm{APX} \cong \angle \mathrm{BPX}$, the lines are perpendicular because thet it to form congruent adjacent angles.

Construction 4 Given a point not on the line, construct a perpendicular to the line through the point.

Steps

1. Using P as the center, construct an arc intersecting k at two points. Label the points A and B
Now use the steps for constructing a \perp bisector
2. Using a compass with a radius greater than $1 / 2 \stackrel{\rightharpoonup}{A B}$ construct two arcs (below line segment) having A as center and two arcs having B as center
3. Connect the intersection of the $\operatorname{arcs} \mathrm{X}$ to P

Justification
Draw $\overline{P A}, \overline{P B}, \overline{X A}$, and $\overline{X B} \cdot \overline{P A} \cong \overline{P B}$ and $\overline{X A} \cong \overline{X B}$, so $\triangle \mathrm{PAX} \cong \triangle \mathrm{PBX}$ by
SSS. $\angle \mathrm{PAT} \cong \angle \mathrm{PBT}$, base angles of isosceles triangle, $\angle \mathrm{APT} \cong \angle \mathrm{BPT}$

- cpctc. $\triangle \mathrm{APT} \cong \mathrm{BPT}$ by ASA. $\angle \mathrm{PTA} \cong \angle \mathrm{PTB}$, cpctc which are congruent adjacent angles, therefore the lines are perpendicular

Construction 5 Given an angle, construct a congruent angle.

Steps

1. Draw ray RS
2. Using the compass with B as the center, make an arc intersecting the rays and label the intersections X and Y .
3. With the same radius, draw the same arc with R as the center, label the point of intersection G.
4. Using a compass, use Y as the center and measure of the radius YX, construct an arc intersecting ray BA
5. Using the compass with G as the center and radius still YX, construct an arc intersecting arc DE. Label the point of intersection H
6. Draw $\overrightarrow{R H}$

Construction 6

Given an angle, construct an angle bisector

Steps

1. Using a compass with B at the center, construct an arc intersecting both rays. Label the intersections as R and S .
2. With points R and S as centers, construct arcs intersecting in the interior of $\angle \mathrm{ABC}$. Label the point of intersection as X .
3. Draw ray BX

When $\overline{R X}$ and $\overline{S X}$ are drawn, $\triangle \mathrm{BRX} \cong \triangle \mathrm{BSX}$ by SSS, therefore $\angle \mathrm{RBX} \cong \angle \mathrm{SBX}$ - cpctc and by definition $\overline{B X}$ is an angle bisector.

