
Chapter  16  Exponentials, Exponential Equations & Graphs 

Sec. 1  Simplifying Exponentials 

From earlier study, we derived and learned the 5 rules for exponents that 
were derived from the definition of exponents. 

Rule 1. Am An = Am+n  

Rule 2. Am ÷ An = Am–n 

Rule 3. A0 = 1, A ≠ 0 

Rule 4. (Am)n = Amn 

Rule 5. A–n = 1/An, A ≠ 0 

So, what we can quickly see from Rule 1, when we multiply numbers with 
the SAME base, we add the exponents. Rule 2 states when we divide 
numbers with the SAME base, we subtract the exponents. Rule 5 indicates 
that when you have a negative exponent, we get a fraction, the reciprocal 
with a positive exponent. It’s important that you know those rules and can 
identify which rules go with problems. 

Example 1   Simplify x3 x6 

  Since its a multiplication problem, that’s Rule 1, when you   
  multiply exponentials with the same base, add the exponents. 

  Therefore, x3 x6 = x 3 + 6 = x9 

Example 2   Simplify  y8 ÷ y3 

  Since we are dividing exponentials with the same base, we   
  subtract the exponents. 

  Therefore, y8 ÷ y3 = y 8 – 3 = y 5 
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Example 3  Simplify  T0 

  Any number to the zero power, except zero, equals 1. 

   Therefore, T0 = 1 

I can’t make these exercises more difficult, I can make them longer. All you 
do is apply the rules and simplify one step at a time. 

Example 4  Simplify  (x5y3z5)(x4yz3) 
     x6y4z10 

   First, notice the “y” in the second factor does not have an 
   exponent written explicitly, we need to remember, that   
   means the exponent is 1. 

   Now, simplifying the numerator, multiplying    
   exponentials, we add the exponents in the numerator. 

   (x5y3z5)(x4y1z3)       =    x9y4z8 
                                    x6y4z10                      x6y4z10 

   Now, we have a division problem, we subtract the    
   exponents. 

   x3 y0 z–2 = x3 (1) ( 1/z2) = x3/z2 

Section 1 should be a review, but it is a review you need to be comfortable 
with. 
    

Sec. 2  Solving Exponential Equations 

Most of us are familiar and comfortable with problems such as 5² = 25 and  
2³ = 8. 

In algebra, we are sometimes asked to solve equations like x² = 25.  Without 
too much fanfare, most of us would answer by saying  x = 5 or x = –5.  If 
you didn’t know that, you could have solved that by factoring, then using the 
Zero Product Property or you could have solved by the definition as we did: 
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You’ll notice the variables in the equations we have been solving for are not 
in the exponent. What would happen if the variable was in the exponent, a 
problem like 
                                                               3x = 81. 

That’s called an exponential equation. 

One way to solve it is by trying to plug a number in for x by trial and error 
that would make the equation true.  Using intelligent guessing, trial and error 
is OK, but it’s time consuming. 

If we worked with enough of these, we might see a way of solving this same 
equation by rewriting 81 as a power of 3. 

By substituting, we have  81 = 34, rewriting the equation, we have  

      3x = 34 

Now, since the bases are equal, then the exponents must be equal.  In other 
words, x = 4. 

Mathematically, we write that understanding this way: 

Theorem        For b  > 0, b ≠ 1, bx = by if and only if x = y 

Don’t you just love how we write things mathematically?  What’s this b has 
to be greater than zero and not equal to one business? 

Let’s try b being negative, not greater than zero, and see what happens.  
(–2)² = 2², the exponents are equal, are the bases then equal? No! 

How about when the base equals one:  15 = 1¹² in this case, the bases are 
equal, do the exponents have to be? Again no, that why we have the 
restrictions in the theorem. 

Now you know why b > 0 and b ≠ 1. 
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This is key;  to solve exponential equations, equations with variables in   
  the exponent, the bases MUST be the same! Then I can set   
  the exponents equal by the previous theorem. 

Example 1    Find the value of x; 25 = 22x-1 

Since the bases are equal, then the exponents must be 
equal. 
Therefore,  

   5 = 2x – 1 Solving 

   6 = 2x 

   3 = x 

Substituting 3 makes the original equation true  

Example 2  Find the value of x; 5x = 125 
  
   Notice, the 125 is not written as an exponential. Since the 
   base on the left side of the equation has base 5, can I   
   rewrite 125 as an exponential with base 5. Turns out that   
   125 = 53, substituting, we have 

       5x = 53 

   Now, by theorem, we have x = 3 

Example 3  Solve;       

Notice the bases are not the same, we therefore cannot set 
the exponents equal. That’s too bad, things were working 
out so well, But alas! I’ve always wanted to use that 
expression. 

Is it possible to make the bases the same? Can I write the 
number 4 as a power of 2?  You wouldn’t have asked if 
there was not a way you say. 
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Once I had the bases equal, I set the exponents equal. In tis case, that 
resulted in a quadratic equation. Solving that, we have     

    2(3x² – 5x – 2) = 0 
    2(3x + 1) (x – 2) = 0 
    x =  –1/3 or x = 2 

Yes, say it, you love math!!! 

You might be thinking that the problem was more difficult than the first one;  
3x= 81.  But in reality, it was not.  It was longer because we solved a 
quadratic equation instead of a linear equation– not harder. 

Algorithm for Solving Exponential Equations 

1. Express each side of the equation as a power in the SAME base. 
2. Simplify the exponents 
3. Set the exponents equal 
4. Solve the resulting equation 

Example 3  Solve for x.  93x = 27x–2  

Since the bases are not the same, I cannot set the 
exponents equal.  So, can I make the bases equal? 

                      9 = 32       and        27 = 33 
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Making those substitutions into the original equation, we 
have: 

                 (32)3x = (33)x–2  - Substitution 
            36x = 33x–6  - Exp. (power rule) 
            6x = 3x – 6  - bx = by Theorem 
            3x = – 6 
            x = –2 

Example 4  Solve for n. 9n–1 = (1/3)4n–1 

I have to write each side of the equation using the SAME 
base.  I can write 9 as 9¹ or as 3². 

Remember, 3–1 = 1/3 

Therefore, I can write both sides having base 3  

          9n–1 = (1/3)4n–1  Given 
   (32)n–1 = (3–1)4n–1   Make the bases the same 
          32n–2= 3–4n + 1  Simplify exponents 
   2n – 2 = – 4n + 1  bx = by Theorem 
                            6n = 3 
                              n = ½ 

A longer equation - no problem. We isolate the exponential, make sure the 
bases are the same, and we are back to what we were doing. 

Example 5  Solve:  4 (2x) – 6 = 58 

   Isolate the exponential,  4 (2x) = 64  Add Prop = 
             2x = 16  Div Prop = 
                       2x = 24  Bases = 

      Therefore,  x = 4  Solve 

In all the problems we have solved, we were able to make the bases the 
same, then set the exponents equal. What happens when we can’t make the 
bases the same? In the next chapter, we will discuss that. 
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Sec. 3   Graphing Exponentials of the form y = bx , b > 1 

If I were to ask you to graph an exponential equation in two variables such 
as y = 10x, my guess is you’d construct an x-y chart, plug in convenient 
values of x and find the corresponding values of y. 

Example 1  Graph y = 10x 

   x -3   -2   -1   0    1   2   3 
   y 1/1000 1/100  1/10  1   10  100    1000 

   
   As you can see from the chart, the values of y get large   
   very quickly. So quickly, it’s almost impossible to    
   actually plot the points. Who want to go over 3 and up   
   1000 to plot (3, 1000)? 

   So, to graph this function, I will plot a few key points to   
   get an idea  and extend the graph and  

If I were to graph enough of these 
equations, we would begin to see an 
exponential equation of the form,      
y = bx, all look pretty much the same 
when b ≥ 1. 
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All the graphs would go through the point (0, 1), they would slide down to 
the left getting closer and closer to the x-axis but never touching it.  The 
values of y are always positive no matter what values of x are chosen! If  
x = 5, then y = 105 or 100,000. If x = –5, the y = 10–5 which is 1/10,000. 

Example 2  Graph  y = 2x 

Let x equal –3, –2, –1, 0, 1, 2, 3 and find the 
corresponding values of y. then plot those points 

   
     

  

Since these are exponentials, just like in a geometric sequence, these 
numbers get very, very large – quickly.   

Graph the following. 
1. y = 3x   2. y = 4x   3. y = 6x 

Graphing those, we see they all pass through the point (0,1) and get closer 
and closer to the x-axis as shown in the two examples. 

Sec.  4 Graphing Exponentials of the form y = bx ,  0 < b < 1 

Now, I mentioned that b ≥ 1, the question becomes, what happens if y = bx,  
0 < b < 1? In other words, what happens if b is a fraction between zero and 
one? 
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Well, we could graph y = (1/2)x and see what occurs. Since any number to 
the zero power, except 0, equals 1, the graph should go through the point   
(0, 1) just like it did before.  How else is the graph different?  Well, as x gets 
larger, the values of y get smaller.  It appears the graph gets closer and closer 
to the x-axis, but never touches it. 

The biggest difference in the graphs is that one graph slides to the left, the 
other graph slides to the right. 

                         
Graph the following 

1. y = (1/3)x  2. y = (1/5)x  3. y = (1/10)x 

Sec. 5.  Graphing Exponentials in the for y = bx+h + k 

 To graph equations in the y = bx+h + k format, I first graph the parent 
function, y = bx, then move that graph using translations horizontally and 
vertically. Remember, the parent function always passes through the point 
(0, 1).  

To make sure I have a good idea what the graph will look like, I typically 
plot a couple more convenient points. Since exponentials grow quickly, I try 
to use small numbers so they stay on the coordinate system drew. 
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Procedure 
  1. Graph the parent function with a dashed line thru (0,1) 
  2. From (0, 1) and another point, move the graph up/down k   
           units 
  3. From there, move the graph horizontally h units 
  4.  Connect the points. 

Example 1  Graph y = 2x + 3  

    

Example 2  Graph y = 2x+3 

    
    

So, we can see from these shifts caused by h and k on the parent function. 

Now, let’s put the h and k into one problem and make two shifts on each 
point; vertically and horizontally from the parent function. 
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Example 3  Graph y = 3x–2 – 4 

    
Based on the procedure on the preceding page, the points  of the parent 
function should shift 2 to the RIGHT and 4 DOWN. 
    

Sec. 6    Extending the Laws of Exponents to Rational Numbers 

So far, we have learned the laws of exponents dealing with Integers, positive 
and negative Whole Numbers.  However, when we graph exponential 
equations, we typically connect the ordered pairs and make a nice curve as 
we did in the last two examples.  That suggests that x can take on other 
values besides the set of integers. 

We have seen that that integers can be used as exponents, when the base is 
not equal to zero.  That is 

 51 = 5  (–3)2 = 9  70 = 1  4–2 = 1/16 

When you first studied exponents, you learned an exponent tells you how 
many times to use the base as a factor.  That is, 53 = 5x5x5.  From there, we 
saw that when we multiplied numbers with the same base, rather than 
writing that all out, we could add the exponents and shorten our work. We 
also noticed that when we divided numbers with the same base, we could 
subtract the exponents.  But that introduced some complications.  When we 
divided a number by itself, that resulted in having an exponent of zero – that 
did not make sense.  So, we had a choice, drop the new rule or adapt it to fit 
the rest of the math we previously learned.   
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We noticed any time we divided a number by itself, by the Multiplicative 
Inverse, the answer was one and by using the rule of exponents, we had an 
exponent of zero.  Using Substitution, it was easy to see that any number to 
the zero power, except zero, would always be equal to one as well. The 
reason we have except zero is because we can’t divide by zero in the first 
place. So we made a third rule.   

The rule for dividing exponents led to another rule that involved negative 
numbers.  A negative exponent does not make sense by itself, we can not use 
a base a negative number of times.  We did see some relationships develop 
when we simplified exponentials using the subtraction rule and when we did 
it out the long way.  That lead us to the fourth rule,  a –n = 1/an. 
We will continue with this line of reasoning for rational exponents –  

Let’s look at 5 ½.  Using the definition of an exponent, this does not make 
sense either.  But, if we played with it, we might notice we can make it fit 
the rest of the mathematics we learned just as we did for negative and zero 
exponents. 

The following should be true using the laws of exponents we already know. 

                                     (5 ½)2  = 5 ½ 2  = 51  = 5 

This clearly suggests that if I square 5½, I get 5.  Or the square root of 5 is 
51/2. 

   
         (4 1/3)3 = 4 (1/3) 3 = 41 = 4 

This suggests that the third root of 4 can be written as 41/3. 

These observations will lead to an extension of the laws of exponents so the 
exponents can be rational expressions. 

If p is an integer, r is a positive integer, and b is a positive real number, then 

                      
  and   (bp)1/r = (b1/r)p 
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Let’s see what all that means: 

Example 1  Write  in exponential form   

   The index, when not written, is understood to be two.   
   So , in the fraction, the denominator is 2.     
   
     (5y)1/2 
 

Example 2  Write  in exponential form  

                   = 271/3 x2/3 y5/3 
     = 3 x2/3 y5/3 

Example 3  Write (7y)½ in radical form. 

                                        

Example 4  Write 71/3 x2/3 y1/3 z7/3 in radical form. 

   The index is 3. So all I have to do is label the index and   
   place the appropriate exponents with each factor  

   

    
   Now, we typically do not write an      
   exponent when it is 1. So the answer would look like 
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Sec 7  Exponential Growth and Decay 

There are many variations for equations of growth and decay. While they are all 
the same basic formula, they are written differently. One equation that comes 
directly from graphing the parent function y = bx is y = abx. 

In the equation y = abx, the “y” represents the final amount, the “a” represents the 
initial amount, the “b” is the rate of change, and the “x” is time. 

Example 1 Write an equation to represent the following information. A    
  population of a town is 20,000. The population is growing at a rate of   
  5% per year, find the population after t years. 
   
  The general equation for growth  y = abx 

  a = 20,000 the original population 
  b = 1.05, 100% + 5% growth 
  x = t 

  Population in 10 years    y = 20,000(1.05)t 

         y = 20,000(1.05)10 
         y ≈ 20,000(1.628) 
         y ≈ 32,560 

  The population after 10 years would approximate 32, 560 people. 

Example 2 Bob places $10,000 in the bank and is paid 6% per year. How much   
  money will be in the bank account after 5 years. 
   
  Again, the equation for growth/decay is  y = abx 

  a - the original amount invested is $10, 000 
  b - the rate of growth is 1.06, 100% + 6% 
  x - the time is 5 years  
         y = 10,000(1.06)5 

         y ≈ 10,000(1.338) 
         y ≈ 13, 380 

  After 5 years, Bob would approximately $13,380 in his account. 
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Another way to write the exponential growth equations is to replace b, with (1 + r)  

      y = abx 

      y = a(1 + r)x.  

What that does is allows a quick way to find the growth - b. In the last example, we 
said the growth rate was 6%. We convert the percent to a decimal and add that to 
one. Notice, we still get 1.06. In other words, the new equation might look 
different, but it’s really the same. 

Example 3 Jack’s base pay when he started his job was $30,000. If he was    
  promised a cost of living increase of 2% per year for his first 10 years   
  on the job, what would be his pay after 10 years. 

     y = a(1 + r)x 
     y = 30,000(1 + .02)x 
     y = 30,000(1.02)10 

     y = 30,000(1.218) 
     y ≈ 36,540 

  Jack’s base pay would approximate $36,540. 

Compound Interest 

Compound interest is an application of exponential growth. Again, we have the 
same equation, written differently, and with different variables. 

     A = P(1 + r)t 

In compound interest problems, “A” represents the amount in the account, “P” 
represents the initial principal or investment, “r” the interest rate, and “t” time in 
years. So everything is the same except the variables. 

Now the fact is most banks don’t figure interest on a yearly basis. So, we need to 
tweak the equation A = P(1 + r)t. So, if you were receiving 12% interest per year 
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being compounded monthly, you would be earning 1% per month and the interest 
would be figured 12 times. 

So the equation for compound interest is: A = P(1 +  )nt 

So, looking at that “new” formula, r is replaced with ,  is the interest rate 

received for each interest period. t was replaced with nt,  is the number of times the 
interest will be compounded.  

Example 4 Juan’s dad invested $14,000 at 6% per year compounded monthly.   
  How much money will be in his dad’s account after 10 years. 

  Using the formula;    A = P(1 +  )nt  

  P = 14,000,  r = .06 and n = 12 
  t = 10      A = 14,000(1 + )12(10) 

        A = 14,000(1.005)120 

        A ≈ $25,471 
   
  In this problem, his interest rate per month is .005 or 1/2%. His    
  interest will be compounded 12 times per year for 10 years. 

Now, how is exponential decay different from exponential growth? We noticed 
exponential growth, the rate of change was being added to 100%, so we had  
(1 + r) in the equation. With decay, we subtract the decay rate,  (1 – r). Other than 
that, everything else is the same. 

r
n

r
n

r
n

r
n

.06
12
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Example 5 Write an equation to represent the following information. A    
  population of a town is 20,000. The population is decreasing at a rate   
  of 5% per year, find the population after t years. 

   
  This is almost the same problem in Example 1. The only difference is   
  this population is decreasing. Setting it up, we have 

  The general equation for growth  y = abx 

   

  a = 20,000 the original population 
  b = .95, (100% – 5%) decay 
  x = t 

         y = 20,000(.95)t 

  To find the population (y) after 10 years,  y = 20,000(.95)10 
         y ≈ 20,000(.598) 
         y ≈ 11,960 

  The population of the town after 10 years will approximate 11,960   
  people. 
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