$n^{\text {th }}$ Term - Arithmetic Sequences

To find the nth term of an Arithmetic Sequence, use the formula

$$
a_{n}=a_{1}+(n-1) d
$$

a_{1} is the first term, a_{n} is the nth term and d is the difference.
Example \quad Find the $101^{\text {st }}$ term of 6, 11, 16, 21, ...

$$
\begin{aligned}
a_{n}= & a_{1}+(n-1) d \\
a_{101} & =6+(101-1) 5 \\
& =6+(100) 5 \\
& =506
\end{aligned}
$$

Find the nth term of the following sequences.

1. $2,4,6,8, \ldots$ Find the $51^{\text {st }}$ term
2. $7,10,13,16, \ldots$ Find the $5^{\text {th }}$ term
3. $4,9,14,19, \ldots$ Find the $101^{\text {st }}$ term
4. $3,8,13,18, \ldots$ Find the $21^{\text {st }}$ term.
5. $4,10,16,22, \ldots$ Find the $11^{\text {th }}$ term.
6. $10,7,4,1, \ldots$ Find the $31^{\text {st }}$ term.
7. $8,7.5,7,6.5, \ldots$ Find the $9^{\text {th }}$ term.
8. $10,2,-6,-14, \ldots$ Find the next three terms of the sequence.
9. Explain why the sequence $7,9,12,16, \ldots$ is not an arithmetic sequence.
