Solve - by Completing the Square

Procedure: 1. Make sure $\mathbf{a}=1$
2. Put variables on one side, number on the other side
3. Take $1 / 2$ linear term and square
4. Add that result to both sides
5. Factor (use $1 / 2$ linear term)
6. Solve resulting equation using $\mathrm{x}^{2}=\mathrm{n}$ Method

Example Solve by completing the square. $x^{2}-6 x+2=0$

1. $a=1$
2. $x^{2}-6 x=-2$
3. $1 / 2$ of 6 is 3 , square is 9
4. $x^{2}-6 x+9=-2+9$
5. $(x-3)^{2}=7$
$x-3= \pm \sqrt{7}$
$x= \pm \sqrt{7}+3$
*Hint- If the coefficient of the quadratic term is not 1 or if b is an odd number, completing the square is typically not the best option to solve an equation.

Solve:

1. $x^{2}+6 x+1=0$
2. $x^{2}-8 x-6=0$
3. $x^{2}-4 x=10$
4. $x^{2}-6 x=8$
5. $x^{2}+2 x=20$
6. $x^{2}+6 y=6$
7. $x^{2}+10 x+1=0$
8. $t^{2}-8 t+4=0$
9. $x^{2}-4 x+4=0$
10. $x^{2}+4 x+4=0$
11. $2 x^{2}+8 x-12=0$
12. $x^{2}+3 x=-1$
