## Solving Quadratic \& Higher Degree Inequalities by Factoring

## Strategy

1. Place everything on one side, zero on the other side
2. Factor completely
3. Find the critical points
4. Plot those on a number line to identify intervals
5. Check convenient points in those intervals to determine which interval(s) make the inequality true

Example Solve the inequality

$$
\begin{array}{ll} 
& x^{3}-x^{2} \geq 12 x \\
\text { 1. } & x^{3}-x^{2}-12 x \geq 0 \\
\text { 2. } & x\left(x^{2}-x-12\right) \geq 0 \\
& x(x-4)(x+3) \geq 0 \\
\text { 3. } & x=0, x=4 \text { and } x=-3
\end{array}
$$


5. Intervals $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D

A Interval A, $\mathbf{- 5}$ does not work. Interval $\mathrm{B},-\mathbf{1}$ works Interval C, 2 does not work. Interval D, 10 works.

Therefore the solution is $-\mathrm{x} \leq \mathrm{x} \leq 0 \mathrm{UX} \geq 4$

Find the solution set for the following inequalities.

1. $(x+3)(x-5)<0$
2. $x(x-10)(x+1)>0$
3. $x^{2}+x>0$
4. $x^{2}-7 x<-12$
5. $x(x-5)(x+5)>0$
6. $x^{2}+15<8 x$
7. $x^{2}-3>2 x$
8. $(x-2)^{2}<0$
9. $2 x^{3}-5 x^{2}+6 x-15>0$
10. $x^{4}+3 x^{3}-8 x-24<0$
