Rational Root Theorem

Procedure:

- 1. Write all the factors of the leading coefficient
- 2. Write all the factors of the constant
- 3. Place all the factors of the constant over all the factors of the leading coefficient, positive & negative
- 4. Use synthetic substitution by substituting those possible solutions in step 3 to find the zeros

Example: Find all possible solutions $3x^3 - 5x^2 + 6x - 16 = 0$ 1. $\pm \{1, 3\}$ 2. $\pm \{1, 2, 4, 8, 16\}$ 3. $\pm \{\frac{1}{1}, \frac{2}{1}, \frac{4}{1}, \frac{8}{1}, \frac{16}{1}, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{8}{3}, \frac{16}{3}\}$ 4. 1| 3 -5 6 -16 2| 3 -5 6 -16 $\frac{1}{1} -4 2$ $\frac{6}{2} -16$ $\frac{6}{3} -16$ $\frac{6}{3} -16$ $\frac{6}{3} -16$

Therefore x = 2 is a solution and the depressed equation is $3x^2 + x + 8 = 0$ which can be solved by the Quadratic Formula.

Use the Rational Root Theorem to find all the possible solutions to the following equations.

A
1.
$$x^2 + 7x + 12 = 0$$

B
 $x^2 - 6x + -16 = 0$

2.
$$x^2 + 5x + 6 = 0$$
 $x^2 - 25 = 0$

3. $x^3 + 4x^2 + 8x + 5 = 0$ $3x^3 - 2x^2 - 8x - 3 = 0$

4.
$$2x^4 + 7x^3 + 4x^2 - 7x - 6 = 0$$
 $2x^3 - 13x^2 - 13x - 15 = 0$

5.
$$x^3 + 3x^2 - 9x + 4 = 0$$
 $2x^2 - 4x - 12 = 0$

Find the solution set using the Rational Root Theorem & Synthetic Substitution

6. $2x^3 - 5x - 3 = 0$

7.
$$2n^3 + 3n^2 - 11n - 6 = 0$$