Higher Degree Equations – Rational Root Theorem

Procedure:

- 1. Write all the factors of the leading coefficient
- 2. Write all the factors of the constant
- **3.** Place all the factors of the constant over all the factors of the leading coefficient, positive & negative
- 4. Use synthetic substitution by substituting those possible solutions in step 3 to find the zeros

Example Solve $2x^3 - 11x^2 + 12x + 9 = 0$ 1. $\pm \{1, 2\}$ 2. $\pm \{1, 3, 9\}$ 3. $\pm \{1, 3, 9, \frac{1}{2}, \frac{3}{2}, \frac{9}{2}\}$

4.

Using mental math to do the sums mentally, we can arrange our work more conveniently.

X				R
	2	-11	12	9
1	2	-9	3	12
3	2	-5	-3	0

Therefore x = 3 is a solution with a depressed equation of $2x^2 - 5x - 3 = 0$ which can be solved by the Quadratic Formula.

Find the rational roots, if any, of the following equations.

1. $x^3 - 4x^2 + x + 2 = 0$ 2. $x^3 + 2x^2 - 5x - 6 = 0$

Hanlonmath

3.
$$x^4 + 5x^3 + 5x^2 - 5x - 6 = 0$$

4. $x^3 - 5x^2 - 4x + 20 = 0$

5.
$$x^3 + 2x^2 + x + 18 = 0$$

6. $x^4 - 5x^3 + 9x^2 - 7x + 2 = 0$

7.
$$2x^3 + 3x^2 - 8x + 3 = 0$$

8. $6x^3 - 11x^2 - 24x + 9 = 0$

9.
$$4x^3 + 5x^2 + 2x - 6 = 0$$
 10. $2x^4 - x^3 - 6x + 3 = 0$

Hint – fill in a placeholder, zero, for the quadratic term