Linear Quadratic Systems

Procedure for Solving Linear – Quadratic Systems by Substitution

- 1. Solve for one of the variables in the linear equation
- 2. Substitute that expression into the quadratic equation
- 3. Solve the resulting quadratic equation in one variable
- 4. Substitute those values back into the linear equation
- 5. Write the possible solutions as ordered pairs.
- 6. Check EACH ordered pair in both equations

Example Find the solution set $y = x^2 - 2x + 1$ x + y = 31. y = 3 - x2. $3 - x = x^2 - 2x + 1$ 3. $0 = x^2 - x - 2$ 0 = (x - 2)(x + 1) x = 2 or x = -14. x + y = 3; if x = 2, then y = 1 x + y = 3; if x = -1, then y = 45. $\{(2, 1) \text{ or } (-1, 4)\}$

Solve the following systems of equations.

1.
$$y = x^{2} - 5x + 7$$

 $y = 2x + 1$
2. $y = x^{2} - 2x + 1$
 $x + y = 3$

3.
$$x^2 + y^2 = 13$$

 $y = x + 1$
4. $y = x^2 - x - 6$
 $y = 2x - 2$

5.
$$x^{2} + y^{2} = 26$$

 $x - y = 6$
6. $y = x^{2}$
 $y = x - 4$

7.
$$x^{2} + 4y^{2} = 25$$

 $x - 2y = -1$
8. $x^{2} + 4y^{2} = 36$
 $x - 2y = 6$

9.
$$xy = 12$$

 $3x + 4y = 24$
10. $3x^2 + xy = 15$
 $2x + y = 2$

11.
$$y = 4x$$

 $\frac{2}{x} + \frac{4}{y} = 1$
12. $x^2 + y^2 = 1$
 $y = \frac{1}{3}x + 6$

Check your answers in Both equations!