Radicals, Simplifying with Variables

Procedure

1. Rewrite the radicand as a product of perfect square and another number
a. Take the square root of the perfect square and write that number outside the radical
b. With variables, rewrite as a product so the index is a factor of the exponent
c. Divide the exponent by the index and write outside the radical
2. Leave the other number and variables inside the radical
Example Simplify $\sqrt[2]{18 x^{5}}$
Example Simplify $\sqrt[3]{54 x^{7} y^{12} z^{8}}$
a. $\sqrt[2]{9 \cdot 2 x^{5}}$
a. $\sqrt[3]{27 \cdot 2 x^{7} y^{12} z^{8}}$
b. $\quad \sqrt[2]{9 \cdot 2 x^{4} x}$
b. $\sqrt[3]{27 \cdot 2 x^{6} x y^{12} z^{2} z^{6}}$
c. $\quad 3 x^{2} \sqrt[2]{2 x}$
c. $\quad 3 x^{2} y^{4} z^{2} \sqrt[3]{2 x z^{2}}$

Simplify the following.
When the index is not written, it is understood to be 2 .

1. $\sqrt{50}$
2. $\sqrt{48}$
3. $\sqrt{63}$
4. $\sqrt{x^{2}}$
5. $\sqrt{x^{10} y^{6}}$
6. $\sqrt{36 x^{14} y^{6}}$
7. $\sqrt{20 x^{4} y^{10}}$
8. $\sqrt{12 x^{3} y^{10}}$
9. $\sqrt{80 x^{9} y^{5}}$
10. $\sqrt[3]{8 x^{6} y^{12}}$
11. $\sqrt[3]{24 x^{12} y^{10}}$
12. $\sqrt[5]{x^{5} y^{15} z^{12}}$
