Radicals - Rationalizing the Denominator

Procedure

1. Multiply the expression by ONE to get rid of the radical in the denominator.
a) if the denominator is a single radical, multiply by ONE in fractional form using a single radical so the index matches the exponent $-\sqrt[n]{x^{n}}$
b) if the denominator is a binomial, multiply by ONE in fractional form using the conjugate.

$$
\begin{aligned}
& \text { Example Simplify } \frac{5}{\sqrt{3}} \\
& \text { Example Simplify } \frac{5}{3+\sqrt{7}} \\
& \begin{array}{rlrl}
\text { a. } \frac{5}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}=\frac{5 \sqrt{3}}{3} & \text { b. } \frac{5}{3+\sqrt{7}} \cdot \frac{3-\sqrt{7}}{3-\sqrt{7}} & =\frac{5(3-\sqrt{7)}}{9-7} \\
& =\frac{5(3-\sqrt{7)}}{2}
\end{array}
\end{aligned}
$$

Simplify the following.

1. $\frac{4}{\sqrt{3}}$
2. $\frac{5}{\sqrt{2}}$
3. $\frac{1}{\sqrt{3}}$
4. $\frac{1}{\sqrt{2}}$
5. $\frac{1}{\sqrt{3}+2}$
6. $\frac{1}{\sqrt{5}-1}$
7. $\frac{3}{\sqrt{5}+4}$
8. $\frac{2}{\sqrt{5}-3}$
