Equations containing Radicals

Algorithm

- **1.** Isolate the radical.
- 2. Raise both sides of the equation to a power equal to the index.
- 3. Solve the resulting equation
- 4. Check carefully each apparent root in the original equation, rejecting any which are extraneous.

Example

Solve:

1.	$\sqrt{x} = 2$	2.	$\sqrt{x} = 3$
3.	$\sqrt{x+5} = 5$	4.	$\sqrt{x-2} = 4$
5.	$\sqrt{x-1} = 2$	6.	$\sqrt[3]{x-2} = 3$
7.	$\sqrt[4]{x-1} = 2$	8.	$\sqrt{x} - 3 = 0$
9.	$\sqrt{x} - 2 = 0$	10.	$\sqrt{x} - 5 = 0$
11.	$\sqrt{x} - 1 = 3$	12.	$\sqrt{x} - 2 = 2$
13.	$\sqrt{x} - 4 = 3$	14.	$\sqrt{x-3} - 2 = 0$
15.	$\sqrt{x-1} - 3 = 0$	16.	$\sqrt{x-4} - 2 = 0$
17.	$\sqrt{x-3} - 1 = 0$	18.	$\sqrt{x-5} - 2 = 3$
19.	$\sqrt{x-1} - 3 = 4$	20.	$\sqrt{x-6} - 2 = 5$
21.	$\sqrt{5-x} = 4$	22.	$3\sqrt{x} = 1$
23.	$\sqrt{2x} = \sqrt{5}$	24.	$\sqrt{4x} - 8 = 0$

25. $2\sqrt{x} - 6 = 0$

Hanlonmath