Logarithms; simple equations

logs on one side, number on the other side. Use the definition:

$$
\log _{b} n=x \quad \text { iff } \quad b^{x}=n
$$

Example $\quad \log _{4}(x-2)=3$

$$
\begin{aligned}
& 4^{3}=x-2 \\
& 64=x-2 \\
& 66=x
\end{aligned}
$$

Solve for \mathbf{x}.

1. $\quad \log _{3} 81=x$
2. $\log _{4} x=\frac{1}{2}$
3. $\quad \log _{2} 32=x$
4. $\quad \log _{4} x=2$
5. $\quad \log _{5} 125=x$
6. $\quad \log _{2} x=-3$
7. $\log _{25} 5=x$
8. $\quad \log _{x} 32=5$
9. $\log x=3$
10. $\quad \log _{x} 10=\frac{1}{2}$
