2 Types of Log Equations

Type I. $\quad \log _{b} \mathrm{X}=\log _{\mathrm{b}} \mathrm{Y}$, then $\mathrm{X}=\mathrm{Y}$
Type II. $\quad \log _{b} \mathbf{X}=\mathbf{Y}$, then $\mathbf{b}^{\mathbf{Y}}=\mathbf{X}$

Strategy

Rewrite equations as either a single log equaling a number OR a single \log equaling a single log, then use the appropriate Type I or Type II rule.

$$
\text { Example } \quad \begin{aligned}
\text { Solve } \log _{2}(\mathrm{x}+12)-\log _{2} \mathrm{x} & =2 \\
\log _{2}(\mathrm{x}+12) / \mathrm{x} & =2 \\
(\mathrm{x}+12) / \mathrm{x} & =\mathbf{2}^{2} \\
(\mathrm{x}+12) / \mathrm{x} & =4 \\
\mathrm{x}+12 & =4 \mathrm{x} \\
12 & =3 \mathrm{x} \\
4 & =\mathrm{x}
\end{aligned}
$$

Solve the following equations.

1. $\quad \log _{2} x+\log _{2}(x-2)=3$
2. $\log _{3}(x+2)-\log _{3} x=3$
3. $\quad \log _{2} x+\log _{2}(x-4)=6$
4. $3 \log (x)-5=4$
5. $\quad \log \left(x^{2}-9\right)-\log (x+3)=1$
6. $\quad \log (x+6)-\log (x+2)=\log x$
7. $\quad \log 4 x-\log (x-3)=\log 2$
8. $\quad \ln (2 x+5)+\ln x=\ln 7$
9. $\quad \log _{2} 3 x+\log _{2} 3=\log _{2}(2 x+15)$
10. $\quad \ln e^{x}-2 \ln e=\ln e^{4}$
