Logarithmic Equations

2 Types of Equations:

> A) \log on one side - Use definition
> B) \log on both sides - drop log notation

Procedure - write as single logs, then choose Type A or B
Example: \quad Solve for $x: \quad \log _{7}(x+1)+\log _{7}(x-5)=1$

$$
\log _{7}(x+1)(x-5)=1
$$

$$
(x+1)(x-5)=7^{1}
$$

$$
x^{2}-4 x-5=7
$$

$$
x^{2}-4 x-12=0
$$

$$
(x-6)(x+2)=0, \text { so } x=6 \text { or } x=-2
$$

$$
\# x \neq-2, \text { so } x=6
$$

Solve the following problems. Check your domain!

1. $\log _{5}(x+10)+\log _{5}(x-10)=3$
2. $\quad \log _{2}(x+4)(x-3)=3$
3. $\quad \log _{3}(3 x+3)(x+3)=2$
4. $\quad \ln (7-x)+\ln (-4-x)=\ln (2-4 x)$
5. $\quad \log _{4}\left(x^{2}-9\right)-\log _{4}(x+3)=1$
6. $\quad \log _{3}(2 x-9)+\log _{3}(x+1)=1$
