1. Acidity is defined by the formula $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, where $[\mathrm{H}+]$ is the hydrogen ion concentration measured in moles per liter. If the pH is less than 7 , then it's considered acidic. If greater than 7 , its basic and if it measures 7 , then its neutral. If a solution was tested and the hydrogen ion concentration given by $[\mathrm{H}+]=.0003$, find the pH value and determine if it is basic or acidic.

Evaluating pH when $[\mathrm{H}+]$ is .003 , we have $\mathrm{pH}=-\log [\mathrm{H}+]$

$$
\begin{aligned}
& \mathrm{pH}=-\log (.003) \\
& \mathrm{pH} \approx 3.523
\end{aligned}
$$

That's less than 7, so the solution is acidic.
2. Using acidity as defined by the formula $\mathrm{pH}=-\log [\mathrm{H}+]$, where $[\mathrm{H}+]$ is the hydrogen ion concentration measured in moles per liter, testing a solution of ammonia with $[\mathrm{H}+]=1.3 \times 10^{-9}$, deterrmine if it's acidic or basic.

$$
\begin{aligned}
\mathrm{pH} & =-\log \left(1.3 \times 10^{-9}\right) \\
& =-\log 1.3+\log 10^{-9} \\
& =-(\log 1.3-9 \log 10) \\
& \approx+8.8861
\end{aligned}
$$

Since that pH is greater than 7, it's basic.
3. The formula for loudness is given by $\mathrm{dB}=10 \log \left(\mathrm{I} / \mathrm{I}_{\mathrm{o}}\right)$. dB is decibels, Io is sound that can be barely heard and I is how more times intense than the initial sound being barely heard. If a cat's purr is 316 times as intense as a threshold sound, find the decibel rating.

$$
\begin{aligned}
\mathrm{dB} & =10 \log \left(\mathrm{I} / \mathrm{I}_{0}\right) \\
& =10 \log (316 \mathrm{Io} \div \mathrm{Io}) \\
& =10 \log (316) \\
& \approx 24.9969
\end{aligned}
$$

