Addition Rule

Mutually exclusive events have no outcomes in common

$$
P\left(A^{\wedge} B\right)=P(A)+P(B)
$$

$$
P\left(A^{\wedge} B\right)=P(A)+P(B)-P\left(A^{\wedge} B\right)
$$

1. Why does the relationship $P(A)+P(B)=P(A$ or $B)$ work only for mutually exclusive events?
2. Timothy is asked to determine the P (iPod or iPhone). He adds the column P (iPad) $=30 / 72$ to the row $\mathrm{P}($ (iPhone) $=55 / 72$ and gets 85/72. Because this number exceeds 1 he knows that he has done something wrong. What did he do wrong?

	iPad	Not iPad	Total
	25	$\mathbf{3 0}$	55
iPhone	Not		
Not			
iPhone			
Total	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{1 7}$
	$\mathbf{3 0}$	$\mathbf{4 2}$	$\mathbf{7 2}$

3. Determine the probability.
a) $P(A)=0.45 \quad P(B)=0.56$
b) $P(A)=0.3$
$P(B)=0.15$
c) $P(A$ or $B)=0.8$
$P(A$ and $B)=0.2$
$P(A$ or $B)=$ \qquad Events A and B are mutually exclusive.
$P(A)=0.6$
$P(B)=0.5$
$P(A$ or $B)=$ \qquad $P(A$ and $B)=$ \qquad
d) $P(A)=0.24 \quad P(B)=0.32$
e) $P(A)=0.7 \quad P(B)=0.4$
f) $P(A$ or $B)=0.6$
$P(A$ and $B)=0$
$P(A$ and $B)=0.3$
$P(A)=0.25$
$P(B)=0.35$
$P(A$ or $B)=$ \qquad
$P(A$ or $B)=$ \qquad
\qquad
4. Given that events A and B are independent, determine the probabilities.
a) $P(A)=0.3 \quad P(B)=0.7$
b) $P(A$ and $B)=0.4$
$P(B)=0.5$
c) $P(A)=0.6 \quad P(B)=0.35$
$P(A$ and $B)=$ \qquad $P(A)=$ \qquad
$P(A$ and $B)=$ \qquad
$P(A$ or $B)=$ \qquad
$P(A$ or $B)=$ \qquad
5. Use the two way frequency table to determine the probabilities.
a) $P($ Red or Green $)=$ \qquad b) $P($ Green or Yellow $)=$ \qquad
c) $P($ Male or Green $)=$ \qquad d) $P($ Female or Yellow $)=$ \qquad
e) $P($ Red or Blue or Green $)=$ \qquad

| | Red | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | | | Green Blue Yellow Total | | |
| ---: | :---: | :---: | :---: |
| Male | 15 | 9 | 11 |

6. A 12 sided dice is rolled. Shade the required region and determine the requested probability.

Set $A=$ Factors of $6=\{1,2,3,6\}$
$P(A)=4 / 12$
Set $\mathrm{C}=$ Odd Numbers $=\{1,3,5,7,9,11\}$
$P(C)=6 / 12$
a) Shade Set $A \cup$ Set B
$P(A$ or $B)=$
c) Shade Set C \cup Set B
$P(C$ or $B)=$ \qquad

d) Shade Set A \cup Set D
$P(A$ or $D)=$ \qquad

e) Shade Set A \cup Set C

$P(A$ or $C)=$ \qquad

f) Shade Set B \cup Set D
$P(B$ or $D)=$ \qquad

7. Use a standard deck of cards to determine the probabilities.
a) $P($ Red Card or Black King $)=$ \qquad b) $P($ Face Card or Diamond $)=$
c) $P($ Ace or 8$)=$ \qquad d) $P($ Spade or 5$)=$
e) $P(6$ or Red Ace $)=$ \qquad f) $P($ Black Card or 7$)=$
g) $P($ Club or Heart $)=$ \qquad h) $P($ Jack or Red Face Card $)=$

