Addition Rule

Mutually exclusive events have no outcomes in common

$$P(A \land B) = P(A) + P(B)$$
 $P(A \land B) = P(A) + P(B) - P(A \land B)$

1. Why does the relationship P(A) + P(B) = P(A or B) work only for mutually exclusive events?

2. Timothy is asked to determine the P(iPod or iPhone). He adds the iPad Not iPad Total column P(iPad) = 30/72 to the row P(iPhone) = 55/72 and gets 85/72. iPhone 55 25 30 Because this number exceeds 1 he knows that he has done Not 5 12 17 iPhone something wrong. What did he do wrong? 42 72 30 Total

3. Determine the probability.

P(A or B) =	P(A or B) =	P(A and B) =
P(A and B) = 0	P(A and B) = 0.3	P(A) = 0.25 P(B) = 0.35
d) P(A) = 0.24 P(B) = 0.32	e) P(A) = 0.7 P(B) = 0.4	f) P(A or B) = 0.6
P(A or B) =	P(A or B) =	P(A and B) =
P(A and B) = 0.2	Events A and B are mutually exclusive.	P(A) = 0.6 P(B) = 0.5
a) $P(A) = 0.45 P(B) = 0.56$	b) P(A) = 0.3 P(B) = 0.15	c) P(A or B) = 0.8

4. Given that events A and B are independent, determine the probabilities.

a) P(A) = 0.3 P(B) = 0.7	b) P(A and B) = 0.4 P	e(B) = 0.5	c) P(A) = 0.6	P(B) = 0.35	
P(A and B) =	P(A) =		$P(\Lambda \text{ and } R) =$		
P(A or B) =	P(A or B) =		F(A and b) =		

5. Use the two way frequency table to determine the probabilities.

a) P(Red or Green) =	b) P(Green or Yellow) =		Red	Green Blue Yellow Total			, Total
		Male	15	9	11	2	37
c) P(Male or Green) =	d) P(Female or Yellow) =	Female	8	12	6	7	33
e) P(Red or Blue or Green) =		Total	23	21	17	9	70

bill@hanlonmath.com

6. A 12 sided dice is rolled. Shade the required region and determine the requested probability.

______h) P(Jack or Red Face Card) =

g) P(Club or Heart) =