Multiplication Rule

1. Jane is given the following probability problem and her work is displayed. She has done something wrong. What did she do wrong and why is it wrong?

Problem: A bag of marbles has 3 green, 2 blue and 5 red marble. What is the probability of getting a red and then a green marble without replacement?

$$P(R \text{ and } G) = \left(\frac{5}{10}\right) \left(\frac{3}{10}\right) = \frac{15}{100}$$

2. Given a jar of cookies with 5 chocolate chip, 3 oatmeal, and 2 peanut butter cookies in it, determine the following probabilities.

a) Getting an oatmeal cookie and	b) Getting two chocolate chip	c) Getting a peanut butter cookie
then a chocolate chip cookie	cookies without replacement.	and then an oatmeal cookie
without replacement.		without replacement.

P(O and CC) =	P(CC and CC) =	P(PB and O) =
		r (r b and 0) =

3. Given two bags of marbles, bag #1 with 2 green, 3 red and 7 orange, and bag #2 with 5 green, 1 red and 4 orange. Determine the following probabilities.

a) Getting an orange from bag #1 and then getting a green from bag #2.	b) Getting a red from bag #1 and then getting a red from bag #1 without replacement.	c) Getting a green from bag #1 and then getting a green from bag #2.

P(O1 and G2) =

P(R1 and R1) = _____

P(G1 and G2) =

d) Getting a red from bag #1 and then getting an orange from bag #1 with replacement.

e) Getting a red from bag #2 and

f) Getting a green from bag #1 and then getting an orange from bag then getting an red from bag #2.

P	(R1	and	01) =		
•		4114	~ ~			

#2 with replacement.

P(R2 and O2) = _____ P(G1 and R2) = _____

4. Using the marble bags in question #3, what would P(Green and Green) be if the person picked from bag #1 and then placed that marble into bag #2 and then picked from bag #2?

5. Given a standard deck of cards. Determine the probabilities.

a) Getting a red card and then a red card without replacement.	b) Getting a face card and then a 5 without replacement.	c) Getting a numerical card less than 5 and then a king with replacement.	
P(Red and Red) =	P(Face and 5) =	P(#<5 and King) =	
d) Getting a 2 and then a 2 without replacement.	e) Getting two black face cards without replacement.	f) Getting any pair without replacement.	
P(2 and 2) =	P(B Face and B Face) =	P(Pair) =	

6. Complete the tree diagram by writing in the probabilities for each branch and then calculating the probabilities for each possible outcome.

a) Bag #1 has 2 white and 3 red marbles and bag #2 has 4 purple, 2 green and 1 orange. Pick from bag #1 keep it and then pick from bag #2.

b) A bag of marbles has 15 red and 5 green. Two picks are made from the same bag without replacement.

bill@hanlonmath.com

7. A Jar of cookies have 12 chocolate chip cookies, 13 peanut butter cookies, and 5 walnut cookies. Beside the jar is a cookie sheet of 20 chocolate chip cookies.

Some unique replacement rules exist as you pick from the jar:

- -- if you pick a chocolate chip cookie from the jar you eat it and then replace it with 2 chocolate chip cookies from the cookie sheet.
- -- if you pick a peanut butter cookie you eat it
- -- if you pick a walnut cookie, you put it back.

a) P(CC | P) = _____ b) P(P|W) = _____

c) P(W|CC) = _____

d) P(CC and then W) = _____

- e) P(CC and CC) = _____ f) P(W and then W) = _____
- g) P(PB and then CC) = _____

h) Which has a greater chance of happening? P(PB and then a W) or P(W and then a CC)?

8. Box #1 has 7 white marbles and 3 black marbles and Box #2 has 6 black marbles and 4 white marbles. You pick a marble from box #1 (not looking at it) and then place it into box #2.

a) on the second pick from Box #2, P(W|B) = _____

b) on the second pick form Box #2, P(B|B) = _____

- c) P(W and W) = _____
- d) P(B and then W) = _____

e) P(B and then B) = _____