Transformations by Definition

Translation - a translation that maps point X into X^{\prime} maps every point P into P^{\prime} such that:
a) If P does not lie on $\overleftrightarrow{X X^{\prime}}$, then PXX ' P is a parallelogram.
b) If P lies on $X X^{\prime}$, then there is a segment $\overline{Y Y^{\prime}}$, such that both $X Y Y^{\prime} X^{\prime}$ are parallelograms.

Notation: $\mathrm{T}_{\mathrm{xx}}(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+\mathrm{a}, \mathrm{y}+\mathrm{b})$ (moving points on the coordinate axes)
The composition of two reflections over parallel lines has the same effect as a translation twice the distance between the parallel lines.

Reflection in a Line - a reflection in a line k maps every point P into a point P^{\prime} such that:
a) If P does not lie on k, the k is the perpendicular bisector of $\overline{P P^{\prime}}$.
b) If P lies on k, then P^{\prime} is the same point as P .

Notation: $\boldsymbol{R}_{\mathrm{x} \text {-axis }}(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x},-\mathrm{y})$, some books use M (mirror) instead of \boldsymbol{R}.
Composition of a reflection over intersecting lines is the same as a rotation (twice the measure of the angle formed by the intersecting lines

Rotation about a point \mathbf{O} - a rotation about a point \mathbf{O} through \mathcal{B}° maps every point P into P^{\prime}, such that:
a) If P is different from 0 , the $O P^{\prime}=O P$ and the $m \angle P^{\prime} O P=\mathcal{B}^{\circ}$
b) If P is the point 0 , then P^{\prime} is the same as 0 .

Notation: $\mathrm{R}_{0,90^{\circ}}(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{y}, \mathrm{x})$ (draw circles with center O thru pts, then use \mathcal{B})

Every rotation about a point O through \mathcal{B}° is equal to the composition of two reflections.

