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Ch. 00  Transformations 
 
Sec. 1 Mappings & Congruence Mappings  
 
Moving a figure around a plane is called mapping. In the figure below, ∆ABC was moved 
(mapped) to a new position in the plane and the new triangle formed, ∆A’B’C’ is called the 
image of ∆ABC. 
  

                      
 
Mathematically we write,  ∆ABC –––––>  ∆A’B’C’ 
 
A transformation is a mapping such that; 
   1. each point in the plane has exactly one image 
   2. for each point in the plane there is exactly one preimage 
                                   
We have seen transformations in algebra when we moved graphs around the coordinate plane. 
 
We want to look at different kinds of transformations that maintain their same size and shape, 
they are called isometries or congruence mappings. By definition, an isometry is a 
transformation that preserves distance and angle measure.  
 
So, looking at the figure above, the distance between AA’, BB’, and CC’ are all the same and all 
the angles, respectively are congruent – have the same angle measure. 
 
Again, looking at the figure below, the original figure is called the preimage and the final shape 
and position of the figure is called the image. 

                                  
 
 

∆ABC is mapped into ∆A'B'C'

C'
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C
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∆ABC  --->  ∆A'B'C'
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Sec. 2 Isometries 
 
In this section, we will look at three transformations that are isometries; a reflection, translation 
and a rotation.  
 

Reflection 
 
We all have experienced a reflection, look in the mirror. Pretty simple, right? We will formalize 
that definition this way. 
 
A reflection in some line j maps every point P into a point P’, such that: 
  1. If P does not lie on j, then 𝒋 is the perpendicular bisector of 𝑷𝑷′$$$$$ 
  2. If P lies on j, then P’ is the same point as P. 

                          
That reflection was rather obvious because we reflected the points across a vertical line. Not so 
obvious when reflecting across “any” line. 
 
Using the definition, let’s reflect the “L” across the line k below. 
 

  
 
While the definition of a reflection will allow us to either draw or construct reflections in any 
line, we are going to look at specific reflections in the x-axis, y-axis and the line y = x by  
examining their coordinates. 
 
And of course, since we are doing math, we introduce mathematical notation. The notation we 
will use to indicate a reflection is the small letter “r”. Some books use a capital “M” for a 
reflection so it not confused with a rotation. An “M” for mirroring.  
 

Note:

j is the perpendicular bisector 
of  AA'  and BB'

j

B'

A'

B

A

k

C'B'

A'

C
B

A By definition, line k is the perpendicular bisector 
of AA’, BB’ and CC’. 
 
That means when we draw our lines they must be 
perpendicular. 
 
And the distance from point A to line k = the 
distance from point A’ to line k. 
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We can look at some simple reflections being mapped over vertical and horizontal lines and see 
some patterns that develop that allow us to give immediate answers to reflection problems. For 
instance, looking at reflections across the y-axis, we can see in an ordered pair, the sign of x 
changes. That suggests the following rule. 
 
                                       r y-axis (x,y)  –––––––>   (–x, y) 
 
This is read as “reflection in the y-axis of (x, y) is mapped into (–x, y).” 
      
Example 1 Find r y-axis (2, 3)  
 
  Using the definition above, we change the sign of the x-coordinate, (–2, 3) 

                         
So, putting it simply, to reflect points across the y-axis, we just change the sign of the x 
coordinate. 
 
Example 2 Find r y-axis (–4, 5) 
 
  Changing the sign of the x-coordinate, we have (+4, 5) 
 
If you were to plot those points on the coordinate axes, you would see the y axis would be the 
perpendicular bisector of the line segment connecting those points.  
 
Let’s look at what happens if we want to reflect points across the x-axis. To reflect across the x-
axis, what value will need to be changed? If you said the y value, you got it. Let’s write the rule. 
 
                                    r x-axis (x, y)  –––––>  (x, –y) 
 
Seems pretty simple, right. If you just try to memorize that without visualizing that reflection, 
you might confuse it with a reflection across the y-axis – so don’t! Picture a point being reflected 
across the x-axis and you will know the y coordinate is the one that changes. 
 
Example 3 Find r x-axis (4, 1) 

                      

y-axis

x-axis

(-2, 3) (2, 3)

A' A

(4, –1)

(4, 1)

B'

B

Notice the y-axis would be the 
perpendicular bisector of line segment 
AA’ 

Knowing the rule, or visualizing, we just 
change the sign of the y-coordinate to  
(4, –1) 
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Example 4 Find the r x-axis (–7, –2) 
 
  Using the rule or reasoning, we change the sign of the y-coordinate; (–7, +2) 
 
Our next reflection is across the line, y = x. To find that reflection, we graph y = x on the 
coordinate axes and pick some point (x, y). Then, by the definition of a reflection, we draw a line 
through the point (x, y) that is perpendicular to the line y = x. Now the distance from the point 
(x, y) to the line must be equal to the distance from the line y = x to the new point. 
 
If we drew a few of these, you would notice something very interesting occurring.  
 

 
 
Those types of observations would lead us to a new rule for a reflection of a point across the line 
y = x. 
 
              r y = x (x, y) –––––>  (y, x) 
 
That is, we simply interchange the x and y coordinates. 
 
Example 5 Find r y=x (1, 4) 

                
 
  Interchanging the coordinates, we have (4, 1). Piece of cake, right? 
 
Example 6 Find r y=x (2, –4) 
 

Using the rule that came from our observations, interchange the x and y 
coordinates, we have (–4, 2) 

 
 
In all the above examples, we used the “rules” to reflect just one point across the axes or the line  

A' (2, 5)

A (5, 2)

y = x

A' (4, 1)

A (1, 4)

y = x

Looking at the graph, if the preimage was the 
point (5, 2), its image on the other side of the 
line y = x is (2, 5). The x and y coordinates are 
interchanged! 
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y = x. If we had to reflect polygons or other figures, we would need to map more points. For 
instance, a triangle is defined by 3 points, we would need to map all three to get the image. A 
quadrilateral would require four points to be reflected, and so on. 
 
 So, the good news is that if you can do one reflection, it’s not more difficult to reflect four, the 
problem only takes longer.  
 
Let’s look at an example. 
 
Example 7 Find r y-axis ∆ABC  
 

 
 
The good news is, like in all math, I just can’t make these problems more difficult, only longer. 
And, if you can find these images, you can reverse the rule if given the image to find the original 
points. 
 
For instance;  
 
Example 8 If A’(2, –3) is the image of a point A reflected across the y-axis, find the 

coordinates of A. 
 
 The rule to reflect a point across the y-axis is r y-axis A (x, y) → A’(–x, y) 
 
 We have A(x, y) and A’(2, –3), we can see we changed the sign on the x-

coordinate, so let’s change it back, that results in A(–2, –3). 
 
Always in math, definitions are important. Using the definition of a reflection in a line, we can 

answer questions like the following: 
 
Example 9 If point B is 3.5 inches from the line of reflection, then BB’ =  
 
 Remember, the line of reflection is the perpendicular bisector of the 𝐵𝐵′$$$$$. That 

means that line 𝐵𝐵′$$$$$ is cut in half. So if the distance to the line of reflection is 3.5, 
then the other side is 3.5, so BB” = 7 

 
 
 
 

C (0, 2)

B' (2, 5)B (–2, 5)

A' (6, 1)A (–6, 1)

Notice, to find the reflection across the 
y-axis, we used the same rule 2 times. 
That is, we changed the sign of the x-
coordinate for points A and B. Since C 
was on the y-axis, it stayed the same. 
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Translations 
 

Picture yourself going down a slide, you start at the top and slide down to the bottom. That’s a 
translation. 
 
While that “slide” description works in elementary school, we need a more formal definition for 
secondary students. 
 
A translation that maps X into X’ maps every point P into P’ such that: 
 1. If P does not lie on 𝑿𝑿′(⃖(((((⃗  , then PXX’P is a parallelogram. 

2. If P does lie on 𝑿𝑿′(⃖(((((⃗ , then there is a segment 𝒀𝒀′ such that both XYY’X’ and 
PYY’P’ are parallelograms. 

                        
Now, that’s impressive. But the great news is the translations are the easiest of all the 
transformations. 
 
To do a translation, we move the points around the coordinate plane by looking how the 
translation is defined either graphically or algebraically. 
 
The notation we use for a translation is that is moved graphically is T (SM) (x, y).  That is read the 
point (x,y) is mapped under the translation SM. We look at SM and use the slope to move the 
ordered pair.    
 
Example 1 Find the TSM ∆ABC below. 

                        
 
Using the slope of 𝑆𝑀$$$$, every point must go over 3 and up 2 to find the image. 
 
We can also do perform a translation given points and how those points will be translated by 
being given the movement along the x and y axes. 
 
If we were not given a drawing, we might see this notation for a translation. The “a” moves the 
points P over “a” and the “b” moves the points P up “b’ units. 
                        
                                             T (a,b) (x, y) ––––>  (x + a, y + b) 

P'P

Y'Y

X'X

P'

X'X

P

M

S
C'B'

A'

C

A

B
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Example 2 Find the T (3, -4) (5, 2) 
 

Under this translation, the point (5, 2) will move over 3 and down 4 to find the 
image. (5+3, 2+ –4) = (8, –2) 

 
 
Example 3 Find T (6, –1) ⧠ABCD	

 
	
These are just too easy. Translations, like reflections are isometries, which mean they maintain 
their size and shape, they are congruence mappings.  
 
If we played with these new transformations, we start to see patterns form. For instance, if I 
reflect an picture across two parallel lines, the end result is the same as a translation of theorigian 
figure. What does that composition mean, it means I reflect the picture over one line, then reflect 
it again over the other line that is parallel. 
 
The composition of two reflections over parallel lines has the same effect as a translation 
twice the distance between the parallel lines. 
 
Example 4 Convert the double reflection over parallel lines to a single translations if 
  r y=4 ∘	r	y	=	1(P)	=	T	a,b	P(–5,	2).	
	

So,	the	first	thing	we	do	is	find	the	image	of	the	two	reflections.	Compositions	
are	done	from	right	to	left!		So	we	reflect	(–5,	2)	over	y	=	1	first.	Then	we	
take	that	image	and	reflect	it	across	y	=	4	to	find	the	composition.	

 
Reflecting (–5, 2) over y = 1 results in the image at (–5, 0) – draw the picture. 
Now reflect (–5, 0) over the line y = 4, results in (–5, 8). Now, since we know the 
coordinates of the final image, let’s plug that into our translation formula to find a 
and b. 
    T	a,b	P(–5,	2)	=	(–5,	8)	
 
How many spaces to the right were moved? None, so a = 1, how’d we get from 2 
to 8, we moved up 6, so b = 6. Too easy, right? 
 
    So T	0,6	P(–5,	2)	=	(–5,	8)	
	
And	finally,	notice	the	distance	between	the	parallel	lines	was	4	–1	=	3,	
doubled	will	give	us	the	distance	between	the	picture	and	image	→	6.	

D'

C'B'

A'

D

CB

A

Notice all the points, A, B, C, and  D were 
moved 6 spaces to the right and 1 space 
down. 
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Let’s look at another transformation that is an isometry, a rotation. 
 

Rotation 
 
If you have ever been on a merry-go-round, then you have experienced first-hand a rotation. 
Let’s take an informal look at those merry-go-rounds and assume a person looks like a capital T. 
If T stayed in the same position as the merry-go-round went around (rotated), T would always be 
the same distance from the center of the merry-go-round. A complete rotation would be circular. 
As the merry-go-round went along, if T did not move, what he would see would be different 
from what he saw from his original position. If T had a friend, call him P, that was next to him, 
his distance from the center would not change and would not be the same as T’s distance from 
the center.  
 
We can use that information to find rotations. What we will do is look at a figure ∆ABC being 
rotated 60˚ around some point O, called the center. To help identify points on ∆ABC, I will label 
them A, B and C.  
 
Using O as the center, we will draw concentric circles through A, B and C as shown below. 

                                                              
 
As we indicated earlier, A, B, and C will stay on their own circles. Now, what would that figure 
look like if we rotated the ∆ABC around the center at 60˚? Looking at the polar graph, each 
radius represents a change in 15˚so we can count to get to 60˚ rotation, that means each point 
would move 60˚ and stay on it’s on circle. 
 
All the points A,B and C that made up ∆ABC were all moved (rotated) 60˚ and stayed on their 
own circle, the radii of each stayed the same. 
 
 
Let’s look at a more formal definition of a rotation. 
 
A rotation about a point O through 𝞪˚	maps	every	point	P	into	P’	such	that:	
	 1.	 If	P	is	different	from	O,	then	OP’	=	OP	and	m∠P’OP	=	𝞪˚	
	 2.	 If	P	is	the	point	O,	then	P’	is	the	same	as	P	
 
 

4

3

2

1

4 2 2 4
180˚

C'

B'

A'

0

165˚

150˚

135˚

120˚

105˚ 90˚

C

B

75˚
60˚

45˚

30˚

15˚
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I could do the same thing for any angle measurement, 𝞪˚. All I would need to know is a center 
point and the degree measure. From there, I would draw concentric circles, and use my protractor 
to find the degree measure required. To do that, I would connect each point defining my figure to 
the center, then measure the degrees that number of times. 
 
Now, the mathematical notation used to describe a rotation is R(a,b) 30˚ (x, y). That is read a 
rotation of (x, y) about the point (a, b) through 30˚.  

                           
                                                                 

Notice each point was rotated on its own circle 30˚. 
If we played with these rotations long enough, specifically with rotations of 90˚, we could see 
some patterns develop that would allow us to actually find coordinates of 90˚ rotations by 
inspection. 
 
Let’s rotate figure ABC 90˚. 

                          
 
 
And the special cases are: R (0,0) 90˚ (x, y) ––––>  (–y, x) 
    R (0,0) 180˚ (x, y) –––>   (–x, –y) 
    R (0, 0) 270˚ (x, y) –––>   (y, –x) 
Those are mappings you need to know 
 
Example 1 Find the R(0,0) 90˚ (5, 2) 
 
   Using the formula,  the coordinates are interchanged with a sign change  

(–2, 5) 

4

3

2

1

4 2 2 4

U'

T'

S'

R'

U T

S
R

0˚180˚

165˚

150˚

135˚

120˚

105˚ 90˚
75˚

60˚

45˚

30˚

15˚

4

3

2

1

4 2 2 4

0˚180˚

165˚x

150˚

135˚

120˚

105˚
90˚ 75˚

60˚

45˚

30˚

15˚
N'

M'

0'

ON

M

These rules come from our 
circle coordinates studied in 
trig. 
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Example 2 Find the R(0,0) 180˚ (3, –2) 
 
   Using the formula, both x and y change signs: (–3, +2) 
 
Example 3 Find the R(0,0) 270˚ (4, –6) 
 
   Using the formula, (–6, –4) 
 
Example 4 Find the R O 60˚ ∆ABC 
 

In the previous graphs, we used polar graphs that made moving the points pretty 
simple. If I did not have a polar graph, I would have to construct my own circles 
and use a protractor to rotate the points. Here’s how you’d do that. 

 

 
So we have rules, shortcuts to find rotations of 90, 180 and 270˚. All others we’d find by 
constructing like in the last example. 
 
The transformations: reflections, rotations and translations are all isometries – they keep their 
same size and shape. 
 
We could also explore and find other relationships. It turns out a composition of a reflection 
over intersecting lines is the same as a rotation that is twice the measure of the angle formed 
by the intersecting lines. 
 
Example 5 Use the figure on the right to find the                                                  

measure of the angle of rotation if   
rj ∘	rk	(A)	=	RP	__(A).	
 
The m∠ between the intersecting lines is 60˚ 

  ∴	rj ∘	rk	(A)	=	RP	120(A)	

O

C' B'

A'

C

B

A

We have studied no rule for 60˚, so we can draw 
the rotations using the following steps. 
1.  For A, draw radius OA, construct a circle. 
2.  Use a protractor, using OA as the initial ray 
and measure 60˚, plot point A’ on the circle. 
3.  For B, draw radius OB, construct a circle. 
4.  Use a protractor, using OB as the initial ray 
and measure 60˚, plot point B’ on the circle 
5.  For C, draw radius OC, construct a circle. 
6.  Use a protractor, using OC as the initial ray 
and measure 60˚, plot point C’ 
7. Connect A’, B’ and C’ for the image. 
 
 

                                     k 
     j 
                         60˚   40˚   
 
    l                         P                                     
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Sec. 3 Dilations, a transformation that is not an isometry 
 
A dilation is a transformation that is not an isometry, it is not a congruence mapping. A dilation 
is a transformation that is related to similarity. A good example of a dilation is with the use of a 
projector. The further the projector is to a wall, the larger the picture. The closer the projector is 
to the wall, the smaller the picture. 
 
A dilation with center O and scale factor k (k > 0) is a mapping such that: 
  1. If P is different form O, then P’ lies on 𝑶𝑷((((((⃗  and OP’ = k (OP) 
  2. If P is the point O, then P’ is the same point as P 
 
Beginning with ∆ABC and point O, let A’ lie on  𝑂𝐴(((((⃗  so that OA’ = 2(OA). 
Let B’ lie on 𝑂𝐵(((((⃗  so that OB’ = 2(OB), and let C’ lie on 𝑂𝐶(((((⃗  so that OC’ = 2(PC) 

                              
 
If k > 1, the dilation is called an expansion. If 0 < k < 1, the dilation is a contraction. 
 
Writing a dilation mathematically, we have  

 
 D(0,0) k (x, y) –––––> (kx, ky).  

 
That is read, a dilation of the point (x, y) with center (0, 0) and scale factor k is mapped into the 
point (kx, ky) 
 
 
Example 1 Find the D (0, 0) 4   (2, 7) 
 

Using the above mapping, we multiply both coordinate by the scale factor 4. 
Therefore, we have (8, 28) 

 
 
Example 2 Find the D (0, 0) ½ (6, 14) 
 
  Using the mapping, we multiply both coordinates by the scale factor. 

C'

B'

A'

C

B

A
O
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  Therefore, we have (3, 7) 
If the dilation is not about the origin, (0, 0), then the mapping is described by: 
 
                                        D (a, b) k (x, y)  ––––>  (a + k(x–a), b + k(y–b)) 
 
That is read the dilation of a point (x, y) with center (a, b) and scale factor k is mapped into the 
point (a + k(x–a), b + k(y–b)). 
 
In remembering this mapping, notice the x’s and a’s are x-coordinates, the y’s and b’s are the  
y-coordinates – keep them together when writing the ordered pair. 
 
Example 3 Find the D(2,3) 5 (4, 6) 
 
  Using the above mapping and substituting,  

we have      (2 + 5(4 – 2), 3 + 5(6 – 3)) 
     (2 + 5( 2), 3 + 5(3)) 
     (2 + 10, 3 + 15) 
     (12, 18) 
 
 
Example 4 Find the D (1, –2)  ½ (9, 10) 
   
  Using the mapping,  (1 + ½(9 – 1), –2 + ½(10 – –2)) 
     (1 + ½ (8), –2 + ½(12)) 
     (1 + 4, –2 + 6) 
     (5, 4)  
 
If you were given the coordinates of the image, preimage and scale factor, you could find the 
center by just substituting those values back into the mapping formula. 
 
Example 5 Find the center of the dilation if the preimage was (10, 6), the image was located 

at (34, 22) and the scale factor was 5. 
 
 (a + k(x – a), b + k(y –b)) à a + k(x–a) = image x coordinate 
     a + 5(10 – a) = 34 
     a + 50 – 5a = 34 

    –4a + 50 = 34 
           –4a = –16 
   a  = 4 
 
b + k(y – b) = 22  ; y-coordinate 
b + 5(6 – b) = 22 
b + 30 – 5b = 22 

      –4b =  –8 
     b = 2 

  The center of dilation (a, b) is (4, 2)  



Hanlonmath.com 13 

Let’s use the same mapping formula to find k, given the center, preimage, and image. 
 
Example 6 Find the scale factor k given the center is located at (2, 4), the preimage is (10, 5), 

and the image is located at (26, 7). 
 
 Use the mapping formula and substitute values for either the x or y coordinate,  

you don’t need to do both. 
 
 a + k(x –a) = x coordinate  b + k(y – b) = y coordinate 
 2 + k(10 – 2) = 26   4 + k(5 – 4) = 7 
            2 + 8k = 26              4 + k = 7 
       8k = 24         k = 3 
                    k = 3     
   

The scale factor is 3. 
 

Review of transformation mappings 
 
    r x-axis (x, y) –––> (x, –y) 
    r y-axis (x, y) –––> (–x, y) 
    r y = x  (x, y) –––> (y, x) 
    r y = –x (x, y) –––> (–y,–x) 
    r origin (x, y) –––> ((–x, –y) 
 
    T (a, b) (x, y) –––> (x + a, y + b) 
 
    R(0,0) 90˚  (x, y) –––> (–y, x) 
    R(0,0) 180˚ (x, y) –––> (–x, –y) 
    R(0,0) 270˚ (x, y) –––> (y, –x) 
 
    D(a,b) k (x, y) –––> (a + k(x–a), b + k(y-b))) 
 
Keep in mind the rules show us how to map one point, when we have triangles or quadrilaterals, 
we will have to map three or four points to find the mapping. 
 
 
Sec. 4 Review Compositions of Mappings 
 
Up to this point, we looked at single transformations and then performed a second transformation 
– calling those compositions. If you can do those transformations, then doing compositions of 
transformations (mappings) is just adding a step as we have seen. That is, you do the first 
transformation, then use that result to perform the second transformation with the new (x, y). 
 
So, in essence, this section contains nothing new. It just requires you to do two or more 
transformations within one problem. 
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The notation for a composition of transformations looks like and works like composition of 
functions. There are two notations for compositions of both functions and transformations can be 
utilized. One notation is an open circle. A notation such as T1,5 (x,y) ∘  r y=x (x,y) is read as “a 
translation of (x, y) –––> (x+1, y+5) after a reflection in the line y = x.” or the translation T (1,5) 
of r y=x. 
 
You may also see this notation T1,5(x,y) (r y=x) which is read as after or of – either way. Using 
either notation, the process MUST be done from right to left. Just like in composition of 
functions in algebra. 
 
And, like in all of math, we begin to see patterns form that we generalized. Those generalizations 
allow us to do our work quicker.  
 
An example of a generalization is – Every translation is equal to the composition of two 
reflections. 
 

                        
                      T XX’ ∆ABC  ––––>   ∆A”B”C”           or 
 
  r x=j ∆ABC –––> ∆A’B’C’,  r x = k ∆A’B’C’ –––> ∆A”B”C” 
 
 
As can be seen above, the translation using XX’ results in ∆A”B”C” being in the same position 
and as the ∆ABC and moved XX’. 
 
We can also see the two reflections results in ∆A”B”C” being in the same position and has 
moved XX’. In other words, in either case, we get the same image.  
 
Another popular generalization is every rotation is equal to the composition of two reflections. 
 
The point, composition of mappings is pretty straight-forward as long as you know, have 
memorized, the mapping formulas and you remember to go from right to left when doing the 
composition mappings. While memorization is good, being able to visualize those also helps 
your memory, and the ability to recall the formulas. 
 
And, with anything, the way you get better is by practice, practice, practice. 
 

kj
C"

B"

A"

C'

B'

A'

C

B

A

X'X
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Example 1 ∆JKL has vertices J(6, –1), K(10, –2) and L(5, –3).  Find the coordinates of its 

image after a translation of (0,4) and a reflection in the y-axis. 
 
 The notation for this example would be r y=x ∘ T (0,4) (x, y) –  where J, K and L 

would be the ordered pairs (x, y).  
 
 You could draw this composition to have a visual, but since a graph was not asked 

for, I’m just going to apply the rules we learned. In this case, just adding 4 to the 
y-coordinate. 

 
 T(0,4) J(6, –1) ––> J’ (6, 3) 
 T(0,4) K(10, –2) ––>K’ (10, 2) 
 T(0,4) L(5, –3) ––>L’ ( 5, 1) 
 
 

Now I take my ∆J’K’L’ and do a reflection in the y-axis to find ∆A”B”C”. 
Remember, to do a reflection in the y-axis, we just change the sign of the x-
coordinate. 
 
T(0,4) J(6, –1) ––> J’ (6, 3) ––––––> J” (–6, 3) 

 T(0,4) K(10, –2) ––>K’ (10, 2)––––> K” (–10, 2) 
 T(0,4) L(5, –3) ––>L’ (5, 1)––––––> L” (–5, 1) 
 
Here is what this would look like if you did the problem graphically.. 
 

 
 
 
 
 
 

L"

K"

J"

L'

K'

J'

L

K

J
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The good news with transformations, as long as we understand them and know the shortcuts, we 
can’t make these more difficult – just longer. 
 
Example 2 If you want to translate a shape up 10 units, you could reflect it over the  

line y = 2, if you do, find the value of y. 
 
Let’s draw the picture. 
 
Since the translation is 10 units, half (5)  
has to be above the line of reflection, half 
has to be below. 
 
So 5 units up from the line y = 2 results 
In y = 7. 
 
So, y = 7 
 
 
 

 
If you did two or three of these, and looked at the question, you would see a 
pattern that would allow you to do the problem in your head. 
 
Moving 10 units up, half above the line of reflection, half below – just add 5 to 
the line of reflection and get 7. 

 
 
Example 3 If you want to translate a shape 6 units to the right, you could reflect it over the 

line x = 8, then x = 
 
 Without drawing the picture, if we are moving the shape 6 units to the right, half 

will be on each side of the line of reflection  that’s 3 units. Adding 3 to line of 
reflection, 8 + 3 = 11, so (11, y). 

 
 That’s just too easy. 
 
Let’s convert some compositions to a single transformation and see how that’s done. 
 
 
Example 4 Convert the double refection over parallel lines to a single transformation. 
 
 r x=–1∘	r	x=7	(P)	=	T	x,y	P(10,	7)	
	
	 So,	I’m	looking	for	the	x	and	y	in	the	translation.	
	

 
 
 

•  P’(x, y+10) 
 
 
                                                   y = 2 
 
 
 

• P(x, y) 
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	 The	first	thing	I	have	to	do	is	determine	the	results	of	the	composition	of		the	
reflections.	Once	done,	we	set	that	equal	to	the	translation.	

	
	 As	with	all	compositions,	we	work	from	right	to	left.	So,	let’s	find	r	x=7P(10,	7)	
	 10	is	3	units	to	the	right	of	the	line	of	reflection	x	=	7,	so	P’	has	to	be	3	units	

to	the	left	of	the	line	of	reflection,	resulting	in	(4,	7).	
	

Now	let’s	reflect	that	over	the	line	x	=	–1	to	complete	the	composition.	Since	
4	is	5	units	to	the	right	of	x	=	–1,	I	need	to	go	5	units	to	the	left	of	–1,	which	
puts	us	at	(–6,	7).	
	
If	it	helps,	go	ahead	and	draw	these	on	the	coordinate	axes.	
	
Now,	we	finally	get	to	answer	the	question	being	asked,	to	find	the	single	
translation	that	results	in		
	
	 	 	 T	x,y	P(10,	7)	=	(–6,	7)	
	
So,	what	do	I	add	to	10	to	get	–6	and	what	do	I	add	to	7	to	get	to	7?	
	
The	answers	are	–16	and	0	respectively.	Therefore	my	single	transformation	
that	maps	the	composition	of	reflections	into	(–6,	7)	is:		T–16,	0	(10,	7).	
	
Remember,	the	more	math	you	know,	the	easier	it	gets!	You	might	recall	that	
a	reflection	composition	of	reflections	is	a	translation	with	the	distance	being	
the	twice	difference	in	the	parallel	lines.	
	
So,	instead	of	doing	all	the	work,	since	we	were	reflecting	over	parallel	lines,	
the	translation	is	twice	the	–	1	–	7	=	=–8,	multiply	by	2	=	–16.	And	that’s	
exactly	what	we	got	above;	–16.	
	
That	sure	made	that	problem	a	lot	easier	–	not	to	mention	a	lot	less	work.	
	

	


