Telling the Problems Apart Compare \& Contrast

In math, when we have two parentheses coming together without a sign of operation, it is understood to be a multiplication problem. We leave out the " X " sign because in algebra it might be confused with the variable x .

Stay with me on this, often times, for the sake of convenience, we also leave out the " + " sign when adding integers.

Example: $\quad(+8)+(+5)$ can be written without the sign of operation $\rightarrow 8+5$ it still equals $+\mathbf{1 3}$ or $8+5=13$

Example: $\quad(+8)+(-5)$ can be written without the sign of operation $\rightarrow 8-5$ it still equals $\mathbf{- 1 3}$ or $\mathbf{- 8}-5=-13$

Example: $(-8)+(+5)$ can be written without the sign of operation $\rightarrow-8+5$ it still equals. -3 or $-8+-5=-3$

Now the question is: How do I know what operation to use if we eliminate the signs of operation?

The answer: If you have two parentheses coming together as we do here, $(5)(+3)$, you need to recognize that as a multiplication problem.

A subtraction problem will always have an additional sign, the sign of operation. For example, $12-(-5)$, you need to recognize the negative sign inside the parentheses is a sign of value, the extra sign outside the parentheses is a sign of operation. It tells you to subtract.

Now, if a problem does not have two parentheses coming together and it does not have an extra sign of operation, then it will be treated as an addition problem. For example, $8-4,12+5,9-12$ are all samples of addition problems. Naturally, you would have to use the rule that applies.

