Quadratics, Completing the Square

$$
a x^{2}+b x+c=0
$$

Algorithm

1. Make sure $a=1$
2. Put variables on one side, number on the other side
3. Take $1 / 2$ linear term and square
4. Add that result to both sides
5. Factor (use $1 / 2$ linear term)
6. Solve resulting equation using $\mathrm{x}^{2}=\mathrm{n}$ Method

Example
Solve by completing the square. $x^{2}-6 x+2=0$

$$
\begin{aligned}
& \text { 1. } a=1 \\
& \text { 2. } x^{2}-6 x=-2 \\
& \text { 3. } 1 / 2 \text { of } 6 \text { is } 3 \text {, square is } 9 \\
& \text { 4. } x^{2}-6 x+9=-2+9 \\
& \text { 5. } \\
& (x-3)^{2}=7 \\
& \\
& x-3= \pm \sqrt{7} \\
& \\
& x= \pm \sqrt{7}+3
\end{aligned}
$$

*Hint- If the coefficient of the quadratic term is not $\mathbf{1}$ or if b is an odd number, completing the square is typically not the best option to solve an equation.

Solve the following equations by completing the square.

1. $\mathbf{x}^{2}+10 x-11=0$
2. $\mathbf{x}^{2}-4 x+12=0$
3. $x^{2}+2 x-12=0$
4. $x^{2}+2 x+8=0$
5. $x^{2}-6 x+4=0$
6. $x^{2}+2 x=0$
7. $x^{2}+10 x+21=0$
8. $x^{2}-14 x+46=0$
9. $2 x^{2}+8 x-12=0$
10. $2 x^{2}-3 x-5=0$
