Sum - Difference 2 Cubes

$$
\mathbf{a}^{3} \pm \mathbf{b}^{3}=(a \pm b)\left(\mathbf{a}^{2} \mp a b+b^{2}\right)
$$

There are a couple of things I would like you to

 note:1.The pattern I want you to see is if I have the sum of two cubes, then the binomial factor is also a sum. If I have the difference of two cubes, the binomial factor is also a difference.
2.The sign of the linear term in the trinomial is opposite of the binomial being factored.

Factor completely.
A
B

1. $x^{3}-8$
$x^{3}+8$
2. $x^{3}-27$

$$
x^{3}+27
$$

3. $y^{3}-64$
$y^{3}+64$
4. $x^{3}-125$
$t^{3}+125$
$5.8 x^{3}-125$
$27 x^{3}+64 y^{3}$
$6.125 x^{3}-64 y^{3}$
$8 x^{3}+27 y^{3}$
