Let's compare these methods essentially using one problem.

A) Select 3 people out of seven where the first person chosen gets $\$ 100$, the second person gets $\$ 50$ and the third person receives $\$ 25$. How many ways can this occur?

First ting to notice is order matters, I'd rather be picked first and get $\$ 100$. And, you can't be picked twice, there are no repetitions.

1) Using the FCP, we have $7 \times 6 \times 5,210$ ways to distribute that money between 7 people.
or
2) Using the permutation formula, ${ }_{7} \mathrm{P}_{3}$, choosing 3 people out of 7 , $7!/(7-3)!=7 \times 6 \times 5,210$ ways to distribute the money.

Now, making a minor change to the problem, eliminating the importance of ordering.
B. Select 3 people out of seven, each person receives $\$ 100$. How many ways can this occur?

1) Again, I could use FCP, $7 \times 6 \times 5$, but the order of the 3 people does not matter, so I divide out the repeats $3 \times 2 \times 1-6$. So, I have 35 ways of handing out the money.
or
2) I could have used the permutation formula $\frac{n!}{(n-r)!}$, then divide out the repetition of the 3 people resulting in $7!/[(7-3)!3!]$. But wait, when you divide out the repeats, that's the Combination Formula. Don't you just love how this is all connected!

$$
n C r=\frac{n \operatorname{Pr}}{r!}=n C r=\frac{n!}{(n-r)!r!}=7!/[(7-3)!3!]=35
$$

