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Chapter 17   Logarithms  
 
 
Sec. 1  Definition of a Logarithm 

 
 
In the last chapter we solved and graphed “exponential equations.”  The 
strategy we used to solve those was to make the bases the same, set the 
exponents equal, and solve the resulting equation.   
 
You might wonder what would happen if you could not set the bases equal?   
 
Before we do that, I need to show you another way of writing an 
exponential.  We all know 5² = 25. Another way of writing that is:  

 25 = 2.  The way we say that is the log of 25 with base 5 is 2. 
 
A logarithm (abbreviated log) is an exponent.  Say that a couple of times.  A 
log is an exponent.  A log is an exponent.  So, when I look at the expression 
23 = 8, we know that a log is an exponent; log = 3.  Now looking at the 
exponential, what is the base? It’s 2.  So, filling that information, we have 
log28 = 3. 
 
 
Example 1   Rewrite  34 = 81 as a logarithm. 
 

Remember, a log is an exponent.  What is the exponent?  

So, we can say, log = 4 – an exponent. 

The log of what is 4?  The 3 is the base in the 

exponential. 

Now we have the n = 4.  That means the log of some 
number with base 3 is 4.  What’s the number, 81.  
Therefore, we have 81 = 4 

 
 
 

5log

3log

3log
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Example 2    Rewrite 10² = 100 as a logarithm. 
 

 
Again, a log is a what?  An exponent.  Let’s identify the 
exponent; 2 is correct.  What’s the base?  Yes, the base is 
10.  Therefore, we have:  

  
                                     10² = 100 
 
                               Let’s fill it in, 100 = 2 
 
The important thing to remember is:  A LOG IS AN EXPONENT.  Keep 
that in mind when you are working with logarithms and you’ll just think 
they are peachy! 
 
 
Let’s say the same thing mathematically: 
 
 
 
 
 
 
 
 
 
Example 3  Rewrite 4³ = 64 as a log. 
 

Remember a log is an exponent, log = 3.  What’s the base?  
4 you say.  OK, let’s fill in the numbers.  
We have 64 = 3. 

 
 
Can you go backwards?  In other words, if I gave you a logarithm, could you 
write it as an exponential?  Sure, you could.  Look at the patterns we used to go 
from an exponential to a logarithm. 
 
Example: log10100 = 2;    à 102 = 100 
Example: log101000 = 3; à103 = 1000 
Example: log10 .001 = –3;  à10–3 = .001 
Example: log525 = 2;   à 52 = 25 
 

10log

4log

If a denotes any positive real number and “b” any real number except 1, 
then there is a unique real number, called the logarithm of a with base “b” 
(logb a), which is the exponent in the power of “b” that equals a; that is, 
                               
                                          logba= n  if and only if  a = bn 
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Example 4  Rewrite 8 = 3 as an exponential. 
 

Now remember, a log is an exponent.  Therefore, our 
exponent is 3.  What’s the base?  Yes, it’s 2.  We now have 
2³ = 8. 

 
 
Example 5    Rewrite 10000 = 4 as an exponential 
   104 = 10,000 
 
 
Now, let’s put this in perspective.  All we are doing is learning to write an 
exponential as a logarithm and a logarithm as an exponential. 
 
The reason for doing this is so we can solve equations that we might not have 
been able to solve otherwise. 
 
Let’s solve some simple problems involving logarithms. 
 
 
Example 6  Find the value of x, 81 = 4 
 
   Converting to an exponential, we have   x4 = 81 

                                                   x =  

                                          x = 3 

Example 7  Find the value of x,  8 = x  

   Converting to an exponential, we have       16x = 8 

   Changing the base      ( 24)x = 2³ 

   Simplifying                    24x = 23 

   Set the exponents equal                                      4x = 3 
                                                                       x = ¾ 

 

*** If a base is not written, it is understood to be 10. 

2log

10log

logx

4 81

16log
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Example 8  Solve for x;  27 = x 

       9x = 27 

           (32)x = 33 

                 32x = 33  

               2x = 3 

              the answer is         x = 3/2 

 
Problems involving logarithms can easily be converted to exponentials.  We 
then solve those problems the way we did in the last chapter. 
 
As usual, I can’t make the problems more difficult, I can only make them 
longer.  If you think about some of the rules you have learned previously about 
exponentials, then you’ll have a good idea of what the rules will be concerning 
logarithms. 
 
 
Since by1 = by2  iff   y1 = y2.  That implies that     logbx1 = logbx2   iff   x1 = x2 

 
 
Sec. 2  Inverse of an Exponential 
 
The inverse of the exponential equation, y = bx is found by interchanging the 
domain and range, the x and y. So, the inverse of y = bx is x = by which we 
now know can written as f–1(x) = y = logbx. 
 
So, if we look at the graph of y = 10x and interchange the domain and range, 
x and y coordinates, we have the inverse x = 10y or y = log10x as shown 
below.   
 
Since the logarithm is the inverse of the exponential, we know the domain 
and range are interchanged and the graph is reflected over the graph of the 
line y = x. So, if you can graph y = 10x, the graph of the logarithm will 
consist of the interchanged points of y = 10x 

 

What that means is this; if the graph  y = 10x results in ordered pairs  
(0, 1), (1, 10), (2, 100) etc., then the graph of the inverse, the log will have 
(1, 0), (10,1), (100, 2) etc. as ordered pairs. 

9log
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Let’s look at these graphs. Notice, I ca graph the y = logbx by just 
interchanging the x and y coordinates as mentioned earlier. 
Notice A and A’ and B and B’. 
 

                                  . 

 
 
Sec. 3  Graphing Logarithms 
 
 
As we did with exponentials, I am able to move the graph of logarithms 
around the coordinate system by graphing the parent function first. 
 
For convenience of numbers and space, I’m going to use base 2 in the 
following log graphs. Here’s what we know, the graph of a log will pass 
through (1, 0) and (1, 2) 
 
 

 
 

10

8

6

4

2

5 10

y = x

B' (10, 1)

B (1, 10)

A' (1, 0)

A (0, 1) y = log x( )

y = 10x

4

2

–2

5 10

(4, 2)

(2, 1)

(1,  0)

y = log2 x 



Hanlonmath 
800.218.5482                                                                                                           bill@hanlonmath.com 

6 

Now, those ordered pairs came from the inverse of  y = 2x, , which is the log 
with base 2 
                                                      (0, 1), (1, 2) (2, 4) 
       (1, 0), (2, 1), (4, 2) 
 
Now, if I use   (1, 0), (2, 1), (4, 2) as the ordered pairs in my parent function 
with base 2, then I move the graph around just like I did with exponentials. 
 
Example 1  Graph y = log2 (x) + 3  
 

Based on our previous work, the graph of the parent 
function should all be moved up 3 units. That should 
result in ordered pairs 
(1, 3) (2, 4) and (4, 5) 

 
 

Example 2   Graph y = log2(x – 1) + 3 
  

    
 

6

4

2

5

(1, 3)

(2, 4)

(4, 5)

(4, 2)

(2, 1)

(1, 0)

6

4

2

–2

5

C' (5, 5)

B' (3, 4)

A' ((2, 3)

C (4, 2)

B (2, 1)

A (1, 0)
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Geometrically, I moved each point of the parent graph 
over 1 to the right and up 3. From A to A’, B ot B’, and C 
to C’. 

 
Algebraically, I added 1 to each x-coordinate and 3 to 
each y-coordinate. 

 
Sec. 4  Rules for Logs 
 
Now, let’s leave graphing and go back and look at logarithms from an 
algebraic point of view. And remember, since logarithms are exponents, all 
the rules for exponents should apply to logarithms. 
 
Rewriting the exponential and logarithmic in functional notation, we have      
 

f(x) = bx and f–1(x) = logbx.   
 
We also know by the definition of inverse functions from a previous chapter 
that       

f[f–1(x)] = 𝒃𝒍𝒐𝒈𝒃𝒙 = x.  
 
Let’s use that information and prove that: 
               Statements                                   
Reasons 

1.    y = bx = f(x)     Given 
2.    x = by     Interchange x and y 
3.    y’ = logbx = g(x)   Def of log 
4.    f(g(x)) = 𝑏$%&#'   Composition of fcts. 
5.    Let 𝑏$%&#' = n = bt   Substitution 
6.   logbx = t     Bases =, exponents = 
7.    ∴		b	t	=	x	 	 	 	 Def	of	log 
8.    𝑏$%&#' = x    Substitution (5) 

 
 

Turns out this is an important identity. 
 
Using that identity, we can see the following if the base of the logs is 10 – 
called common logarithms: 
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10loga = a    10logb = b    10logab = ab 
 
So, let’s use the above three equalities that are a direct application of 

 because they are inverse functions. 
 
Using this relationship, we can derive rules for working with logarithms. 
Let’s take a look at 10logab = ab  and see what we can develop for 
multiplication. 
 

        10logab = ab     - Given           

              = (10loga)(10logb) - Substitution 
 
                                                            = 10 loga + logb   - Mult Rule Exp. 
 
                       = 10 loga + logb  - Transitive Prop. 
 
                                    log ab = log a + log b - Exp Equation 
 
 
So, we can see the                    log ab = log a + log b. 
 
Therefore, we can say, to find the logarithm of a product of positive 
numbers, you add the logarithms of the numbers. 
 
That follows our rules of exponents, when you multiply numbers with the 
same base, you add the exponents. 
 
We can use a similar derivation to find the log (

)
.  

 
Again, as a result these being inverse functions, we know that 
 
10loga = a    10logb = b    10loga/b = a/b 
 
Again, using the three equalities that are a direct application of   

 = x, let’s look at what we can develop for division. 
 
      

blogb x = x

∴→

blogb x



Hanlonmath 
800.218.5482                                                                                                           bill@hanlonmath.com 

9 

10loga/b = a/b   - Given 
 

               =   - Substitution 

 
               =   - Div Rule Exp. 
 
                                           10loga/b =   - Transitive Prop. 
 
     log a/b = log a – log b - Exp Equation 
 
So, we can see   log 𝒂

𝒃
 = log a – log b 

 
Therefore, we can say, to find the logarithm of a quotient of positive 
numbers, you subtract the logarithms of the numbers. 
 
That follows our rules of exponents, when you divide numbers with the 
same base, you subtract the exponents. 
 
Another helpful rule in logarithms can be seen by raising them to a power. 
 
Again, we know that  a = 10log a.   If each side is raised to the power of n, we 
have 
 
    a = 10log a  Given   
 
             an = (10 loga)n Exponent Power Rule 
 
                           = 10nlog a  Exp. Raise Power to Power 
 
              
So, we can see                                  log an = n log a 
 
Therefore, we can say, to find the logarithm of a power, you multiply the 
logarithm by the exponent. 
 
That follows our rules of exponents, when you raise a power to a power, you 
multiply the exponents. 
 

10log a

10log b

10log a− log b

10log a− log b

(10loga )n =10n loga
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Sometimes it is helpful to change the base of a logarithm such as logbn to a 
logarithm in another base. 
 
   Let x = logbn 
        bx = n  - Def of log 
          loga bx = loga n - log of both sides 
         xloga b = loga n - Power rule – logs 
                  x =  - Div Prop. Equality 

                     logbn =  - Substitution 

 
So, we can see to change the base of a logarithm, we have 
                                           

 
 
Now, we can use these rules for logarithms to help us solve logarithmic 
equations. 
 
     1. logba = n iff b n = a 2. logbx1 = logbx2   iff   x1 = x2  
 

3. 10 log x = x    
 

4. log ab = log a + log b 
 

5. log a/b = log a – log b 6. log an = nlog a 
 

7. logbn = logan/logab 
 
 
Hopefully you see the rules for logarithms as extensions of the rules of 
exponents. And, when a base is not written, it is understood to be 10 – a 
common logarithm. 
 
We can use these rules to expand or condense logarithm expressions. 
 
 
 

loga n
loga b
loga n
loga b

logb n =
loga n
loga b
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Sec. 5  Rewriting Logarithmic Expressions 
 
Using the above rules, specifically the product, quotient and power rules, we 
can rewrite the logarithms. For instance, the logarithm of a product can be 
written as a sum of logarithms. 
 
 
 
Expand the following: 
 
Example 1 log10 100x = log10 100 + log10 x,      by the product rule 
 
  by definition log10 100 = 2 
 
  substituting 2,   2 + log10 x 
 
Example 2 log10 (1000/y) = log101000 – log10y 
 
       =  3 – log10y 
 
Example 3 log10 xy2/Z = log x + log y2 – log Z 
 
                     = log x + 2 log y – log Z 
 
Notice I did not write the base 10, it is understood to be 10. Also, notice this 
problem has multiplication, power, and quotient rules. 
 
Now the question becomes, can I condense problems using the same rules. 
The answer is yes. 
 
Rewrite as a single logarithm 
 
Example 4 log n + log 5 = This is an example of the product rule 
 
               =    log n5 or log 5n 
 
Example 5 3log x – log y =     This appears to be the power and quotient  
       = log x3 – log y 
       = log x3/y 
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Like everything else in math, I can’t make these more difficult – only longer. 
You do need to know the rules! 
 
 
 
 
 
 
Sec. 6  Solving Equations Containing Logarithms 
 
There are essentially two types of logarithmic equations, equations that have 
logs on both sides and equations where there are logs only on one side of the 
equation. Remember, when no base is written, the base is understood to be 
10. 
 
        Remember, if  by1 = by2  iff   y1 = y2, that implies that logbx1 = logbx2 iff  x1 = x2 

 
      2 Types of Log Equations 
 
  Type I.   logb x = logb y, then x = y 
 
  Type II. logb x = y, then   by = x 
 
Using these 2 rules allows us to eliminates logs from equations, then we 
solve the resulting equations the way we have done in the past. 
 
Strategy for Solving Logarithmic Equations 
 
The strategy for solving logarithmic equations is to rewrite the equations as 
a single log on one or both sides of the equality.  

A) If you have logs on both sides of the equation, then you use the 
rule under Type I above and eliminate the logs.  

B) If you have logs on only one side of the equation, then you use 
the rule under Type II, to get rid of the log.  

And, finally you solve the resulting equation. 
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Example 1.  Solve for x:  log (3x – 2) = log (x + 6) 
 

Is this Type I or II? Since you have logs on BOTH sides 
of the equation, it’s Type I. That results in the logs being 
eliminated in the equation.  Base understood to be 10. 
 

     So,  3x – 2 = x + 6 
          2x = 8 
            x = 4 
 
 
Example 2.  Solve for x: log4 (x2 – 9) = 2 
 

Is this a Type I or II problem? Since there a log ONLY 
on one side, then it is Type 2. Using the definition of log 
(rule 1 in the previous section), results in the log being 
eliminated. 

     So,     x2 – 9 = 42 
       
      x2 – 9 = 16 
 
             x2 = 25 
 

                                                x = 5     or     x = – 5    
 
Now, we know how to solve equations containing logarithms. There are only 
two methods, when we use them, the logs are no longer part of the equation. 
 
As in all of math, I can not make these problems more difficult, but I can 
make them longer. 
 
Looking at the next example, I have the sum of logs equal to a number. In 
order to solve the equation, I have to write the sum of the logs as a single 
log. We derived the log A + log B = log AB – the product rule. So, let’s use 
it. Remember, when there is no base written, it is understood to be 10. 
 
When a base of a logarithm is not explicitly written, it is understood to be 
base 10 – it’s called the common logarithm. A logarithm with base e is 
called the natural logarithms and is written as ln x rather than loge x. 
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Example 3:   Solve for n;  log n + log 5 = 1 
 
  log n + log 5 = 1  Given 
  log 5n = 1   Mult Rule – logs 
  101 = 5n   Def of log 
  2 = n    Div Prop = 
 
 
 
Example 4:  Solve for x;  3log5 x – log5 x = 2 
 

3 log5x – log5x = 2  Given  
log5 x3 – log5 x = 2  Power rule 

  log5 (x3/x) = 2  Div Rule – logs 
  log5 x2 = 2   Div – Exp 
  52 = x2   Def of log 
  ±5 = x    Sq Root 

 
We cannot take the log of a negative number, so x = 5 

 
In both the preceding examples, there were logs on one side of the equation. 
This next one appears to be a little different. Please note, the logs on the left 
side of the equation have no base written, so the base is understood to be 10. 
On the right side the base of the log is written and it is 6. 
 
Example 5:  Solve for x;   log (x – 1) + log (x + 2) = log66 
 
  log (x – 1) + log (x + 2) = log66  Given 
  log (x – 1)(x + 2)           = 1  Mult Rule/ Def of log 
 
Why is log6 6 = 1? 
   

101 = (x – 1)(x + 2)   Def of log 
  10 = x2 + x – 2    Mult polynomials 
  0 = x2 + x – 12    Sub Prop = 
  0 = (x + 4)(x – 3)    Factoring 
  x = – 4 or x = 3    Solving 
  
# x cannot be equal to – 4, so x = 3   Domain of logs 
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Example 6:  Solve;  log8 (m + 1) – log8 m = log8 4 
 

To solve, I need to write the difference of the logs as a 
single logarithm. Fill in the reasons. 

 
  log8 (m + 1) – log8 m = log8 4  Given 
 

                      _________________ 

 

                                   _________________ 

 
         m + 1 = 4m  ______________ 
 
       1 = 3m  ______________ 
 
     1/3 = m  _______________ 
    
So far, we have looked at equations that had a log on one or both sides. So, 
the question we posed in the last chapter on exponentials, what happens if 
you can’t change the base to set the exponents equal? 
 
The Natural Logarithm is a logarithm with base e. As we have previously 
stated, the common logarithm is a logarithm with base 10. The 10 is 
typically not written. With natural logs, logs with base e, they could be 
written as logex. But, the preferred notation is ln x, where ln stands for the 
natural log. 
 
Let’s take a look at this exponential equation. 
 
Example 7  Solve for x;   7x = 9 
 

I clearly cannot make the bases (7 & 9) the same. So, I 
will take the log of each side. The base does not matter. 
 
ln 7x = ln 9 
x ln 7 = ln 9   Power Rule 

   Div. Prop = 

log8 m +1
m

= log8 4

m+1
m = 4

x = ln9
ln7
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      Look upthose values 
 
So now we are able to solve an exponential when we could not change the 
base. 
As usual, I cannot make math more difficult, but I can make the problem 
longer. Let’s look at the next example. In the last example, I indicated the 
base you choose does not matter.  In this example, again the base you choose 
does not matter, but…. 
 
Since I have a number with a base of 10, I will use a log in base 10, a 
common log because that will make the problem easier. 
 
Example 8  Solve for x, 105–x = 8 
 

105–x = 8   Given   
log 105–x = log 8  Take log both sides 

   (5–x) log 10 = log 8 Power Rule 
   (5–x) (1)       = log 8 log aa = 1 
   5 – x = log 8 
   5 – log 8 = x   Subtract Prop = 
   5 – .9030 ≈ x  Look up the log 8 
   4.0969    ≈ x 
 
 
In the last problem, I noticed I had an exponential with base 10. To use our 
rules to make the problem easier, I decided to use logs with base 10.  In this 
next problem, I see have have an exponential with base e, I’ll use ln (the 
natural log) to make the problem simpler using the sam logic. 
 
Example 9  Solve for t;  e t+6 = 2 
 
   e t+6 = 2   Given 
   ln e t+6 = ln 2   Take log 
   (t + 6) ln e = ln 2  Power Rule 
   (t + 6) 1= ln 2  ln e = 1  
   t + 6 = ln2   Dist Prop 
    t  = ln (2) – 6  Sub Prop of = 
    t  = .0931 – 6  Look up value 
    t  ≈ –5.3068   Arithmetic 

x = ln9
ln7

= 2.197
1.945

= 1.129
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Usually, we work with logs with base 10. However, as we have seen from 
the last two examples, choosing the base of a log should be determned by the 
problem. It just makes math easier. 
 
In this next problem, I have 2 exponentials with different bases. So choosing 
a log isn’t going to have much impact on my work. I’ll use the natural log, 
ln, for no other reason than we just introduced it. 
 
Example 10  Solve for y;   24y+1 – 3y = 0 
 
   24y+1 – 3y  = 0  Given     -    
   24y+1 = 3y     Add Prop = 
   ln 24y+1 =ln 3y  log both sides 
   
   (4y+1)ln2 = yln3  Power Rule 
   4yln2 + ln 2 = y ln3 Distribitive Prop 
   4yln2 – yln3 = – ln2 Variables one side; Sub Prop = 
   y(4ln2 – ln3) = – ln2 Factor; Didtributive Prop 

     Div Prop = 
    

 
 
I chose to take the ln, could have used a log with a different base. 
 
Example 11  Solve for x; 5e2x+4 = 8 in terms of ln 
    

5e2x+4 = 8   Given 
   e2x+4 = *

+
   Div Prop = 

   ln e2x+4 = ln *
+
  ln both sides 

   2x + 4  = ln(8/5)  logee 
          2x = ln(8/5) – 4 Sub Prop = 
           x ≈ ½(.4700 – 4) Div Prop = 
           x ≈ – 1.7649  
 
 
 

y = − ln2
4 ln2 − ln 3

y = − ln2
4 ln2 − ln 3

= −.6931
4(.6931)−1.0986

= .− .41407
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Let’s use log equations to solve problems. 
 
Example 1. Acidity is defined by the formula pH = –log[H+], where [H+] is 

the hydrogen ion concentration measured in moles per liter. If 
the pH is less than 7, then it’s considered acidic. If greater than 
7, its basic and if it measures 7, then its neutral. If a solution 
was tested and the hydrogen ion concentration given by [H+] = 
.0003, find the pH value and determine if it is basic or acidic. 

 
  Evaluating pH when [H+] is .003, we have  pH = – log[H+] 
 
    pH = – log(.0003) 
    pH  ≈ 3.523 
   
                                                      That’s less than 7, so the solution is acidic. 
 
 
Example 2 Using acidity as defined by the formula pH = –log[H+], where 

[H+] is the hydrogen ion concentration measured in moles per 
liter, testing a solution of ammonia with  
[H+] =1.3 x 10–9,determine if it’s acidic or basic. 

 
 pH =  –log(1.3 x 10–9) 
       = –log1.3 + log 10–9 

         = –(log 1.3 –9log10) 
                 ≈    + 8. 8861 
                            Since that pH is greater than 7, it’s basic. 

 
 
Example 3 The formula for loudness is given by dB = 10log (I/Io). dB is 

decibels, Io is sound that can be barely heard and I is how more 
times intense than the initial sound being barely heard. If a cat’s 
purr is 316 times as intense as a threshold sound, find the 
decibel rating. 

 
  dB =  10 log (I/I0) 
       = 10 log (316 Io ÷ Io) 
       =  10 log (316) 
       ≈  24.9969 
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