Theorem For b > 0, $b \ne 1$, $b^x = b^y$ if and only if x = y

Example: $3^{x} = 3^{4}$

Don't you just love how we write things mathematically? What's this b has to be greater than zero and not equal to one business?

Let's try b being negative, not greater than zero, and see what happens. $(-2)^2 = 2^2$, the exponents are equal, are the bases then equal? No!

How about when the base equals one: $1^5 = 1^{12}$ in this case, the bases are equal, do the exponents have to be? Again no, that why we have the restrictions in the theorem.

Now you know why b > 0