Theorem For $b>0, b \neq 1, b^{x}=b^{y}$ if and only if $x=y$

Example: $\quad 3^{x}=3^{4}$

Don't you just love how we write things mathematically? What's this \boldsymbol{b} has to be greater than zero and not equal to one business?

Let's try b being negative, not greater than zero, and see what happens. $(-2)^{2}=2^{2}$, the exponents are equal, are the bases then equal? No!

How about when the base equals one: $1^{5}=1^{12}$ in this case, the bases are equal, do the exponents have to be? Again no, that why we have the restrictions in the theorem.
Now you know why $\boldsymbol{b}>\boldsymbol{0}$

