Graphing Parabolas

A parabola is a set of points P whose distance from a fixed point F, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since this curve is being defined by distances - we need to know the distance formula.

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

By the definition of a parabola, we know FP = PD.

$$
\begin{gathered}
\mathrm{FP}=\mathrm{PD} \\
\sqrt{(x-0)^{2}+(y-c)^{2}}=\sqrt{(x-x)^{2}+(y+c)^{2}}
\end{gathered}
$$

Squaring,

$$
x^{2}+(y-c)^{2}=0^{2}+(y+c)^{2}
$$

Expanding

$$
x^{2}+y^{2}-2 y c+c^{2}=y^{2}+2 y c+c^{2}
$$

Subtracting c $c^{2} \& y^{2}$

$$
\begin{array}{r}
\mathrm{x}^{2}-2 \mathrm{yc}=2 \mathrm{yc} \\
\mathrm{x}^{2}=4 \mathrm{yc} \\
\frac{1}{4 c} x^{2}=y
\end{array}
$$

This is an equation of a parabola with vertex at the origin and c being the distance between the Focus, F, and the origin and the origin and the directrix.

Mathematically, we write $\left\{(\mathrm{x}, \mathrm{y}) / y=\frac{1}{4 c} x^{2}\right\}$ is the graph of a parabola with focus $F(0, C)$ and directrix with equation $y=-c$.

