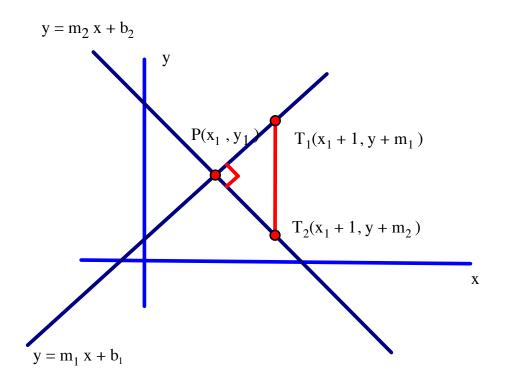
Perpendicular Lines



Since $P(x_1, y_1)$ lies on both lines and using the slope, I can go up m_1 and over 1 on I_1 and using the same reasoning for I_2 , go over 1 and up m_2 . That results in $T_1(x_1 + 1, y_1 + m_1)$ and $T_2(x_1 + 1, y_1 + m_2)$.

The points P, T₁ and T₂ are the vertices of a triangle. Since the lines are perpendicular, ΔPT_1T_2 is a right triangle. Because I have a right triangle, I can use the Pythagorean Theorem to determine the lengths of each side of the triangle. $c^2 = a^2 + b^2$

e triangle.

$$c^{2} = a^{2} + b^{2}$$

$$[d(T_{1}, T_{2})]^{2} = [d(P, T_{1})]^{2} + [d(p, T_{2})]^{2}$$

$$(m_{1} - m_{2})^{2} = (1 + m_{1}^{2}) + (1 + m_{2}^{2})$$

$$m_{1}^{2} - 2m_{1}m_{2} + m_{2}^{2} = 2 + m_{1}^{2} + m_{2}^{2}$$

$$- 2m_{1}m_{2} = 2$$

$$m_{1}m_{2} = -1$$

$$m_{2} = -\frac{1}{m_{1}}$$

 \therefore \rightarrow perpendicular lines have negative reciprocal slopes

Example 4. Find an equation of a line passing through (2, -3) that is parallel to y = 4x + 5

Using $y - y_1 = m (x - x_1)$

I have a point and the number in front of the coefficient is 4, the slope is 4. Substituting, we have

y + 3 = m (x - 2)

The slope of y = 4x + 5 is 4, so

y + 3 = 4(x - 2)y + 3 = 4x - 8y = 4x - 11