Function Notation

Two phone companies, A and B, charged their customers $\$ 20$ per month plus 10 cent per call and $\$ \mathbf{1 0}$ per month plus $\mathbf{2 0}$ cents per call respectively.

Using our current notation, we would use x and y to describe the relationships

Their rates would be for A $\quad \mathrm{y}=.10 \mathrm{x}+\mathbf{2 0}$
and for $B \quad y=.20 x+10$
That could be confusing because their costs are both being described as \mathbf{y}. So it might be better if we wrote those relationships with different identifiers.

$$
\begin{aligned}
& A=.10 x+20 \\
& B=.20 x+10
\end{aligned}
$$

That seems to make sense.

To find the cost of making 80 phone calls, I would need to find the value of A or B when x was 80 .

I'd have to write a sentence.

However, rather than writing a sentence, we come up with a little shorthand.
To find the value of making 80 phone calls with company A, I could describe that cost as:
$A(x)=.10 x+20 \quad$ read as the value of A at x is $.10 x+20$
$A(15)=10(15)+20 \quad$ read as the value of A at 15 is $.10(15)+20$
$A(80)=.10(80)+20 \quad$ read as the value of A at 80 is $.10(80)+\mathbf{2 0}$

Reading \& Writing Functional Notation

So to end confusion when working problems, we can substitute different letters for \mathbf{y} and develop mathematical notation that doesn't require us to write full sentences when we want to check for different values.

So an equation such as $\mathrm{y}=2 \mathrm{x}+3$ can be written as $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ while an equation $y=5 x-2$ could be written as $g(x)=5 x-2$. Clearly f and g represent different functions described in x.

We either say g of $\mathrm{x}=5 \mathrm{x}-2$ or g at $\mathrm{x}=5 \mathrm{x}-2$
And to find a particular value of g when $x=10$, we use the notation if

$$
\begin{aligned}
& g(x)=5 x-2 \text {, then } \\
& g(10)=5(10)-2
\end{aligned}
$$

Reading $g(x)$, we say g of x or g at x, meaning the value of g at x.
The value of g when x is 10 is 48 . As an ordered pair, we'd write $(10,48)$

