Composition of Functions Algorithm $f(g(x))$

Combining Rules

1. Write the f and g functions
2. Write the $f(x)$ rule
3. In $f(x)$, substitute $g(x)$ for every x
4. Substitute the $g(x)$ rule
5. Simplify

$$
\begin{aligned}
& \quad \text { If } f(x)=2 x+5 \text { and } g(x)=3 x+1, \text { find } f\{g(x)\} \\
& f(x)= 2 x+5 \\
& f(g(x))= 2 g(x)+5 \\
&= 2(3 x+1)+5 \\
&= 6 x+2+5 \\
& f(g(x))= 6 x+7
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } t(x)=4 x, h(x)=2 x+1, \text { find } h(t(x)) \\
h(x)= & 2 x+1 \\
h(t(x))= & 2(t(x))+1 \\
= & 2(4 \mathbf{x})+1 \\
= & 8 \mathbf{x}+1
\end{aligned}
$$

We just found $h(t(x))$, let's find $t(h(x))$ and see.
Does $h(t(x))=t(h(x))$?

$$
\begin{aligned}
t(x) & =4 x \\
t(h(x)) & =4(h(x)) \\
& =4(2 x+1) \\
& =8 x+4
\end{aligned}
$$

$$
\text { We can see } h(t(x)) \neq t(h(x))
$$

