Using Composition to Identify Inverses

If f and g are functions with domains D_f and D_g , respectively, and for each all $x \in D_f$ and for each $x \in D_g$ f(g(x)) = xthen f and g are inverse functions

.

Example

$$f(x) = 2x + 15$$
 and $f^{-1}(x) = \frac{x - 15}{2}$

$$f(f^{-1}(x)) = 2\left(\frac{x-15}{2}\right) + 15$$
$$f(f^{-1}(x)) = x - 15 + 15$$
$$f(f^{-1}(x)) = x$$

Example If
$$f(x) = 6x - 2$$
 and $g(x) = \frac{x-2}{6}$, are $f(x)$ and $g(x)$ inverses?

Determine if f(g(x)) = g(f(x)) = x, then they are inverses.

$$f(g(x)) = 6(g(x)) - 2$$

= $6(\frac{x-6}{6}) - 2$
= $x - 6 - 2$
= $x - 8$ f and g are NOT inverses because $f(g(x)) \neq x$. I can stop here.