Using Composition to Identify Inverses

If f and g are functions with domains D_{f} and D_{g}, respectively, and for each all x $\in D_{\mathrm{f}}$

$$
g(f(x))=x
$$

and for each $\mathrm{x} \in D_{\mathrm{g}} \quad \mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{x}$
then f and g are inverse functions

Example

$$
\begin{gathered}
f(x)=2 x+15 \text { and } f^{-1}(x)=\frac{x-15}{2} \\
f(x)=2 x+15 \\
f\left(f^{-1}(x)\right)=2\left(\frac{x-15}{2}\right)+15 \\
f\left(f^{-1}(x)\right)=x-15+15 \\
f\left(f^{-1}(x)\right)=x
\end{gathered}
$$

Example If $f(x)=6 x-2$ and $g(x)=\frac{x-2}{6}$, are $f(x)$ and $g(x)$ inverses?

Determine if $f(g(x))=g(f(x))=x$, then they are inverses.

$$
\begin{aligned}
\mathbf{f}(\mathbf{g}(\mathbf{x})) & =\mathbf{6 (g (\mathbf { x }))} \mathbf{- \mathbf { 2 }} \\
& =\mathbf{6}\left(\frac{\mathbf{x - 6}}{\mathbf{6}}\right)-\mathbf{2} \\
& =\mathbf{x}-\mathbf{6}-\mathbf{2} \\
& =\mathbf{x}-\mathbf{8} \quad \text { fand } \mathrm{g} \text { are NOT inverses because } \mathrm{f}(\mathrm{~g}(\mathrm{x})) \neq \mathrm{x} . \text { I can stop } \\
& \\
& \text { here. }
\end{aligned}
$$

