Arithmetic Sequences as Functions

If we think about arithmetic sequences a little bit in terms of our previous study, of functions, we might realize when we add the same number over again to find the next value, we are adding a constant. That suggests the common difference in an arithmetic sequence could be viewed as a slope, a rate of change from one value to the next in a linear function.

I can write the formula for the n^{th} term using function notation by substituting values for a_1 , d, and rewriting a_n as f(n), then simplifying.

Example 1 Given $a_1 = 4$ and d = 5, write a rule to find the terms of the sequence.

$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_1 + (\mathbf{n} - 1)\mathbf{d}$	Given
$a_n = 4 + (n-1) 5$	Substitution
$a_n = 4 + 5n - 5$	Distributive Prop
$a_n = -1 + 5n$	Combine like terms
$a_n = 5n - 1$	Comm. Property