Arithmetic Sequences as Functions

If we think about arithmetic sequences a little bit in terms of our previous study, of functions, we might realize when we add the same number over again to find the next value, we are adding a constant. That suggests the common difference in an arithmetic sequence could be viewed as a slope, a rate of change from one value to the next in a linear function.

I can write the formula for the $\mathbf{n}^{\text {th }}$ term using function notation by substituting values for a_{1}, d, and rewriting a_{n} as $f(n)$, then simplifying.

Example 1 Given $a_{1}=4$ and $d=5$, write a rule to find the terms of the sequence.

$$
\begin{array}{ll}
a_{n}=a_{1}+(n-1) d & \text { Given } \\
& \\
a_{n}=4+(n-1) 5 & \text { Substitution } \\
a_{n}=4+5 n-5 & \text { Distributive Prop } \\
a_{n}=-1+5 n & \text { Combine like terms } \\
a_{n}=5 n-1 & \text { Comm. Property }
\end{array}
$$

