Logarithms – Exponentials

 $y = b^x$ inverse is $x = b^y$

A logarithm is an exponent

 $\log_{b} x = y$

Convert to logarithms

$$2^3 = 8$$

 $5^2 = 25$
 $10^3 = 1000$

Convert to exponentials

log₁₀ 100 = 2

log₅ 125 = 3

log₂ 32 = 5

 $\mathbf{A}^{\mathbf{m}} \cdot \mathbf{A}^{\mathbf{n}} = \mathbf{A}^{\mathbf{m}+\mathbf{n}}$

 $\log_b x \cdot y = \log_b x + \log_b y$ read the log of the product is the sum of the logs of the factors

 $A^m \div A^n = A^{m-n}$

 $\log_b x/y = \log_b x - \log_b y$

 $(A^m)^n = A^{mn}$

 $\log A^m = m \cdot \log A$