Logarithms - Exponentials

$$
y=b^{x} \quad \text { inverse is } x=b^{y}
$$

A logarithm is an exponent

$$
\log _{b} x=y
$$

Convert to logarithms

$$
\begin{aligned}
& 2^{3}=8 \\
& 5^{2}=25 \\
& 10^{3}=1000
\end{aligned}
$$

Convert to exponentials

$$
\log _{10} 100=2
$$

$$
\log _{5} 125=3
$$

$$
\log _{2} 32=5
$$

$A^{m} \cdot A^{n}=A^{m+n}$
$\log _{b} x \cdot y=\log _{b} x+\log _{b} y \quad$ read the \log of the product is the sum of the logs of the factors

$$
A^{m} \div A^{n}=A^{m-n}
$$

$\log _{b} x / y=\log _{b} x-\log _{b} y$
$\left(A^{m}\right)^{n}=A^{m n}$
$\log A^{m}=m \cdot \log A$

