Compound Interest

Compound interest is an application of exponential growth, $\mathbf{y}=\mathbf{a b}^{\mathrm{x}}$. We have the same equation, written differently, and with different variables because its being used in a different content.

$$
\mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{r})^{\mathbf{t}}
$$

In compound interest problems, " A " represents the amount in the account, " P " represents the initial principal or investment, " r " the interest rate, and " t " time in years. So everything is the same except the variables.

Now the fact is most banks don't figure interest on a yearly basis. So, we need to tweak the equation $\mathrm{A}=\mathrm{P}(1+\mathrm{r})^{\mathrm{t}}$. So, if you were receiving 12% interest per year being compounded monthly, you would be earning 1% per month and the interest would be figured 12 times.
So the equation for compound interest is: $\mathrm{A}=\mathrm{P}\left(1+\frac{r}{n}\right)^{\mathrm{nt}}$
So, looking at that "new" formula, r is replaced with $\frac{r}{n}, \frac{r}{n}$ is the interest rate received for each interest period. \boldsymbol{t} was replaced with $\boldsymbol{n t}$, is the number of times the interest will be compounded.

Example Juan's dad invested \$14,000 at 6\% per year compounded monthly. How much money will be in his dad's account after 10 years.

Using the formula;

$$
\mathrm{A}=\mathrm{P}\left(1+\frac{r}{n}\right)^{\mathrm{nt}}
$$

$\mathrm{P}=14,000, \mathrm{r}=.06$ and $\mathrm{n}=12$
$\mathrm{t}=10$

$$
\begin{aligned}
& \quad A=14,000\left(1+\frac{.06}{12}\right)^{12(10)} \\
& A=14,000(1.005)^{120} \\
& A \approx \$ 25,471
\end{aligned}
$$

In this problem, his interest rate per month is .005 or $1 / 2 \%$. His interest will be compounded 12 times per year for 10 years.

