Example

Given: $\overline{R O N Y}$

$$
\overline{R O} \cong \overline{N Y}
$$

Prove: RN = OY

Looking at this picture, we start off with a line segment and $\overline{R O} \cong \overline{N Y}$. I want to prove RN = OY, but I don't have an RN or an OY in the problem. So, I have to ask myself, how can I get them in the problem? If I used the Segment Addition Postulate in the picture, I have RO + ON = RN. That gives am the RN I need.

So, we want to add $\overline{O N}$ to both segments. But we don't have a theorem or postulate that allows us to add segments together - only distances associated with those segments. The other hint that I had to get rid of the segment notation was I had to prove the distances were equal.

		STATEMENTS
	REASONS	
1.	$\overline{R O N Y}, \overline{R O} \cong \overline{N Y}$	Given
2.	$\mathrm{RO}=\mathrm{NY}$	Def of Congruence
3.	$\mathrm{ON}=\mathrm{ON}$	Reflexive Property
4.	$\mathrm{RO}+\mathrm{ON}=\mathrm{NY}+\mathrm{ON}$	Add Prop Equality
5.	$\mathrm{RO}+\mathrm{ON}=\mathrm{RN}$	Segment Add Postulate
6.	$\mathrm{ON}+\mathrm{NY}=\mathrm{OY}$	
$\mathrm{RN}=\mathrm{OY}$	Substitution into step 4	

