Arc Addition Postulate

Arc Addition Postulate The arc addition postulate is parallel to the segment addition postulate and the angle addition postulate. That is, an arc is equal to the sum of its parts.

$$
\widehat{A C}=\widehat{A B}+\widehat{B C}
$$

Theorem The measure of an inscribed \angle is half the measure of the intercepted arc.

Given: $\angle \mathrm{ABC}$ inscribed

Prove: $\quad \angle \mathrm{ABC}=\frac{1}{2} \overparen{A C}$

	Statements	Reasons
1.	Draw OA	Construction
2.	$\overline{\mathrm{OB}} \cong \overline{\mathrm{OA}}$	Radii
3.	$\angle \mathrm{A} \cong \angle \mathrm{B}$	2 sides of Δ are \cong, \angle 's opposite are \cong
4.	$\angle \mathrm{AOC}=\angle \mathrm{A}+\angle \mathrm{B}$	Ext $\angle=2$ remote int \angle 's
5.	$\angle \mathrm{AOC}=\angle \mathrm{B}+\angle \mathrm{B}$	Sub
6.	$\angle \mathrm{AOC}=2 \angle \mathrm{~B}$	D-Prop
7.	$\frac{1}{2} \angle \mathrm{AOC}=\angle \mathrm{B}$	DPE
8.	$\angle \mathrm{AOC} \cong \overparen{A C}$	Central \angle, arc
9.	$\frac{1}{2} \overparen{A C}=\angle \mathrm{B}$	Sub

