Theorem The measure of an inscribed \angle is half the measure of the intercepted arc.

Given: ∠ABC inscribed

Prove:
$$\angle ABC = \frac{1}{2} \widehat{AC}$$

	Statements	Reasons
1.	Draw OA	Construction
2.	$\overline{OB} \cong \overline{OA}$	Radii
3.	$\angle A \cong \angle B$	2 sides of Δ are \cong , \angle 's opposite are \cong
4.	$\angle AOC = \angle A + \angle B$	Ext $\angle = 2$ remote int \angle 's
5.	$\angle AOC = \angle B + \angle B$	Sub
6.	$\angle AOC = 2 \angle B$	D-Prop
7.	$\frac{1}{2} \angle AOC = \angle B$	DPE
8.	$\angle AOC \cong \widehat{AC}$	Central∠, arc
9.	$\frac{1}{2}\widehat{AC} = \angle \mathbf{B}$	Sub