Theorem When 2 secants intersect in a circle, the \angle formed is = to $\frac{1}{2}$ the sum of the arcs formed by the vertical \angle .

Given: XY & ZW intersect

Prove:
$$\angle 1 = \frac{1}{2}(\widehat{XZ} + \widehat{YW})$$

Statements		Reasons
1.	Draw \overline{XW}	Construction
2.	$\angle 1 = \angle 2 + \angle 3$	Ext \angle of Δ = sum of 2 remote int \angle 's
3.	$\angle 2 = \frac{1}{2} \widehat{ZX}$	Inscribed $\angle = \frac{1}{2}$ intercepted arc
	$\angle 3 = \frac{1}{2} \widehat{\text{YW}}$	
4.	$\angle 1 = \frac{1}{2} \ \widehat{ZX} + \frac{1}{2} \ \widehat{YW}$	Substitution in step 2
5.	$\angle 1 = \frac{1}{2}(\widehat{ZX} + \widehat{YW})$	Distributive Prop

Notice the importance of the triangle theorems in these proofs.