Theorem When 2 secants intersect in a circle, the \angle formed is $=$ to $\frac{1}{2}$ the sum of the arcs formed by the vertical \angle.

Given: XY \& ZW intersect
Prove: $\angle 1=\frac{1}{2}(\widehat{\mathrm{XZ}}+\widehat{\mathrm{YW}})$

Statements	Reasons	
1.	Draw $\overline{X W}$	Construction
2.	$\angle 1=\angle 2+\angle 3$	Ext \angle of $\Delta=$ sum of 2 remote int \angle 's
3.	$\angle 2=\frac{1}{2} \overparen{\mathrm{ZX}}$	Inscribed $\angle=\frac{1}{2}$ intercepted arc
	$\angle 3=\frac{1}{2} \overparen{\mathrm{YW}}$	
4.	$\angle 1=\frac{1}{2} \overparen{\mathrm{ZX}}+\frac{1}{2} \overparen{\mathrm{YW}}$	Substitution in step 2
5.	$\angle 1=\frac{1}{2}(\widetilde{\mathrm{ZX}}+\overparen{\mathrm{YW}})$	Distributive Prop

Notice the importance of the triangle theorems in these proofs.

