When two chords intersect within a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the other chord.

$$
\mathrm{ab}=\mathrm{cd}
$$

Let's look at the proof

Given: Chords $\overline{X Y} \& \overline{Z W}$
Prove: $\mathrm{a} \cdot \mathrm{b}=\mathrm{c} \cdot \mathrm{d}$

Reasons

	Statements	Reasons
1.	Draw $\overline{\mathrm{XZ}}$ and $\overline{\mathrm{WY}}$	Construction
2.	$\begin{aligned} & \angle \mathrm{X} \cong \angle \mathrm{~W} \\ & \angle \mathrm{Z} \cong \angle \mathrm{Y} \end{aligned}$	Inscribed \angle 's intercept same arc
3.	$\angle \mathrm{XKZ}$ and $\angle \mathrm{YKW}$ are Vert \angle	Def. Vertical \angle
4.	$\Delta \mathrm{XKZ} \sim \Delta \mathrm{WKY}$	AA Postulate
5.	$\frac{\mathrm{a}}{\mathrm{~d}}=\frac{\mathrm{c}}{\mathrm{~b}}$	$\sim \Delta$'s proportion
6.	$\mathrm{ab}=\mathrm{cd}$	Prop of Proportion

