external segment is equal to the product of the other secant and its external segment.

$$
\begin{array}{ll}
\text { Given: } & \text { secants } \overline{\mathrm{PX}} \text { and } \overline{\mathrm{PY}} \\
\text { Prove: } & \mathrm{PX} \cdot \mathrm{PY}=\mathrm{PZ} \cdot \mathrm{PW}
\end{array}
$$

Statements
Reasons

1. Draw $\overline{\mathrm{XW}}$ and $\overline{\mathrm{ZY}}$
2. $\angle \mathrm{X} \cong \angle \mathrm{Z}$
3. $\angle \mathrm{P} \cong \angle \mathrm{P}$
4. $\Delta \mathrm{XPW} \sim \Delta \mathrm{ZPY}$
5. $\frac{\mathrm{PX}}{\mathrm{PZ}}=\frac{\mathrm{PW}}{\mathrm{PY}}$
6. $\mathrm{PX} \cdot \mathrm{PY}=\mathrm{PZ} \cdot \mathrm{PW}$

Construction
Inscribed \angle, same arcs
Reflexive
AA Postulate
$\sim \Delta$'s, sides in proportion

Prop of Proportion

