Set Proofs

1. Show that the intersection distributes over the union: For any sets A, B, and C, prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
2. Show that the union distributes over the intersection: For any sets A, B, and C, prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
3. Use the distributive property to simplify the expression:

$$
(A \cup B) \cap(A \cup C)=A \cup(B \cap C)
$$

4. Use the distributive property to simplify the expression:

$$
(A \cup B) \cap(C \cup D)=(A \cap C) \cup(A \cap D) \cup(B \cap C) \cup(B \cap D)
$$

5. Use the distributive property to simplify the expression: $(A \cup B) \cap(A \cap B)=A \cap B$
6. Use the distributive property to simplify the expression:

$$
(A \cap B) \cup(A \cup C)=A \cup(B \cap C)
$$

7. Use the distributive property to simplify the expression: $(A \cap B) \cup(C \cap D)=(A \cup C) \cap(B \cup D)$
8. Use the distributive property to simplify the expression: $(A \cap B) \cup(C \cup D)=(A \cup C) \cap(A \cup D) \cap(B \cup C) \cap(B \cup D)$
9. Show that the union of two sets is equal to the complement of their intersection: For any sets A and B, prove that $A \cup B=\left(A^{\wedge} c \cap B^{\wedge} c\right)^{\wedge} C$, where $A^{\wedge} C$ and $B^{\wedge} C$ are the complements of A and B, respectively.
10. Use the distributive property to simplify the expression:
$\left(A^{\wedge} C \cap B\right) \cup\left(A \cap B^{\wedge} C\right)=(A \cup B) \backslash(A \cap B)$
