Finding $\mathrm{n}^{\text {th }}$ Roots including Variables

Procedure for Simplifying $\mathbf{n}^{\text {th }}$ roots:

1. Rewrite the radicand as a product of numbers and variables raised to the power or multiple of the index, n, and some other numbers
2. Take the $n^{t}{ }^{\text {h }}$ root of the factors raised to the nth power by dividing the exponent by the index
3. Leave the other numbers and variables in the radical.

Note, simplifying variables is very easy. You rewrite the variable in the radicand using a factor of the index, and simplify by dividing by the index.
$\sqrt[2]{x^{6}}$
$\sqrt[3]{x^{6}}$
$\sqrt[6]{x^{6}}$
$\sqrt[3]{x^{13}}$
$\sqrt[3]{x^{13} y^{12} z^{20}}$
$\sqrt[5]{x^{9} y^{8} z^{20}}$
$\sqrt{8 x^{5}}$
$\sqrt{18 x^{3}}$
$\sqrt[3]{8 x^{3}}$
$\sqrt[3]{16 x^{5}}$

Can't make them harder - only longer
$\sqrt[3]{16 x^{2} y^{7}}$
$\sqrt[5]{32 x^{10} y^{17} z^{39}}$

