Dividing Radicals Rationalizing the Denominator

When you have a single radical in the denominator, you multiply the expression by 1 in the form of that radical. That works because we know that $\sqrt[n]{x^{n}}=x$. That gets rid of the radical.

Example Rationalize the denominator $\frac{2}{\sqrt{3}}$
To get rid of the radical, I will multiply that expression by 1 in the form of $\frac{\sqrt{3}}{\sqrt{3}}$.

$$
\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{9}}=\frac{2 \sqrt{3}}{3}
$$

What happens if you don't have a single factor in the denominator which is a radical?

Well, to continue to do these successfully, you do need to know your special products -

Specifically the Difference of 2 Squares.

$$
(a-b)(a+b)=a^{2}-b^{2}
$$

Knowing that special products means we square the first and last terms and the middle terms that would have radicals will subtract out.

$$
(\sqrt{3}+5)(\sqrt{3}-5)=3-25=-22
$$

Procedure

1. Multiply the expression by ONE to get rid of the radical in the denominator.
a) if the denominator is a single radical, multiply by ONE in fractional form using a single radical so the index matches the exponent $-\sqrt[n]{x^{n}}$
b) if the denominator is a binomial, multiply by ONE in fractional form using the conjugate.

Simplify the following.

1. $\frac{4}{\sqrt{3}}$
2. $\frac{5}{\sqrt{2}}$
3. $\frac{1}{\sqrt{3}}$
4. $\frac{1}{\sqrt{2}}$

$$
\text { 5. } \frac{1}{\sqrt{3}+2}
$$

6. $\frac{1}{\sqrt{5}-1}$
7. $\frac{3}{\sqrt{5}+4}$
8. $\frac{2}{\sqrt{5}-3}$
