Z- Scores

A z-score (also called a standard score) gives you an idea of how far from the mean a data point is. But more technically it's a measure of how many standard deviations below or above the population mean a raw score is by converting the mean to zero.

$$
\mathbf{Z}=\frac{\boldsymbol{x}-\boldsymbol{\mu}}{\boldsymbol{\sigma}}
$$

μ - is the mean
$\boldsymbol{\sigma}$ - standard deviation

The z -score changes the mean to zero.

Example: Let's say you have a test score of 190. The test has a mean (μ) of 150 and a standard deviation (σ) of 25. Assuming a normal distribution, your z score would be:

$$
\begin{aligned}
\mathbf{Z} & =\frac{x-\mu}{\sigma} \\
& =\frac{190-150}{25} \\
& =\frac{40}{25}=1.6 \quad \begin{array}{l}
\text { That is } 1.6 \text { standard deviations } \\
\text { above the mean using Bell Curve }
\end{array}
\end{aligned}
$$

Since z-scores are standardized, we can look up 1.6 on a chart to find a percentile rank

