Reflection

We all have experienced a reflection, look in the mirror. Pretty simple, right? We will formalize that definition this way.

A reflection in some line j maps every point P into a point P^{\prime}, such that:

1. If \mathbf{P} does not lie on \boldsymbol{j}, then \boldsymbol{j} is the perpendicular bisector of $\overline{\boldsymbol{P} \boldsymbol{P}^{\prime}}$
2. If P lies on j, then P^{\prime} is the same point as P .

By definition, line \boldsymbol{k} is the perpendicular bisector of $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}$ and CC^{\prime}.

That means when we draw our lines they must be perpendicular.

And the distance from point A to line $\boldsymbol{k}=$ the distance from point A' to line \boldsymbol{k}.

