Dilation

Not an Isometry

A dilation is a transformation that is not an isometry, it is not a congruence mapping.

A dilation is a transformation that is related to similarity. A good example of a dilation is with the use of a projector. The further the projector is to a wall, the larger the picture. The closer the projector is to the wall, the smaller the picture.

A dilation with center \mathbf{O} and scale factor $k(k>0)$ is a mapping such that:

1. If P is different form O, then P^{\prime} lies on $\overrightarrow{O P}$ and $O P^{\prime}=k(O P)$
2. If P is the point O, then P^{\prime} is the same point as P

Beginning with $\triangle \mathrm{ABC}$ and point O , let A^{\prime} lie on $\overrightarrow{O A}$ so that $\mathrm{OA}^{\prime}=2(\mathrm{OA})$.
Let B^{\prime} lie on $\overrightarrow{O B}$ so that $\mathrm{OB}^{\prime}=2(\mathrm{OB})$, and let C^{\prime} lie on $\overrightarrow{O C}$ so that $\mathrm{OC}^{\prime}=2(\mathrm{PC})$

If $\mathrm{k}>1$, the dilation is called an expansion. If $0<\mathrm{k}<1$, the dilation is a contraction.
Writing a dilation mathematically, we have

$$
\mathbf{D}_{(0,0)} \mathrm{k}(\mathbf{x}, \mathbf{y}) \longrightarrow(\mathbf{k x}, \mathbf{k y}) .
$$

That is read, a dilation of the point (x, y) with center $(0,0)$ and scale factor k is mapped into the point (kx, ky)

Example 1 Find the $\mathrm{D}_{(0,0) 4}(2,7)$
Using the above mapping, we multiply both coordinate by the scale factor 4 . Therefore, we have $(8,28)$

Example 2 Find the $D_{(0,0)} 1 / 2(6,14)$
Using the mapping, we multiply both coordinates by the scale factor. Therefore, we have $(3,7)$

If the dilation is not about the origin, $(0,0)$, then the mapping is described by:

$$
\mathbf{D}_{(\mathrm{a}, \mathrm{~b})} \mathrm{k}(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathbf{a}+\mathbf{k}(\mathrm{x}-\mathrm{a}), \mathrm{b}+\mathrm{k}(\mathrm{y}-\mathrm{b}))
$$

That is read the dilation of a point (x, y) with center (a, b) and scale factor k is mapped into the point $(a+k(x-a), b+k(y-b))$.

Example 3 Find the $\mathrm{D}_{(2,3) 5}(4,6)$
Using the above mapping and substituting,
we have $\quad(2+5(4-2), 3+5(6-3))$

$$
(2+5(2), 3+5(3))
$$

$$
(2+10,3+15)
$$

$$
(12,18)
$$

Example 4 Find the $D_{(1,-2)} 1 / 2(9,10)$
Using the mapping, $\quad(1+1 / 2(9-1),-2+1 / 2(10--2))$

$$
\begin{aligned}
& (1+1 / 2(8),-2+1 / 2(12)) \\
& (1+4,-2+6) \\
& (5,4)
\end{aligned}
$$

Example 5 Find the center of the dilation if the preimage was (10, 6), the image was located at $(34,22)$ and the scale factor was 5.

$$
\begin{gathered}
(a+k(x-a), b+k(y-b)) \rightarrow a+k(x-a)=\text { image } x \text { coordinate } \\
a+5(10-a)=34 \\
a+50-5 a=34 \\
-4 a+50=34 \\
-4 a=-16 \\
a=4 \\
\\
b+k(y-b)=22 ; y \text {-coordinate } \\
b+5(6-b)=22 \\
b+30-5 b=22 \\
-4 b=-8 \\
b=2
\end{gathered}
$$

The center of dilation (a, b) is $(4,2)$

