Zero Exponent

Example $1 \quad 4^{2} \div 4^{\mathbf{2}}=\mathbf{4}^{\mathbf{2 - 2}}=\mathbf{4}^{\mathbf{0}}$
\# Using the definition of an exponent, that does not make sense.

Using the Multiplicative Inverse, we know a number divided by itself equals 1

$$
1=\frac{4^{2}}{4^{2}}=4^{0}
$$

Using the Transitive Property, $4^{0}=1$
Any number raised to the zero power, except 0 , equals 1

$$
\mathbf{A}^{0}, \mathbf{A} \neq \mathbf{0}=1
$$

Why the exception?

Evaluate In Exponential Notation
1)

$$
\frac{4^{2} \cdot 4^{5} \cdot 4^{3}}{4^{2} \cdot 4^{5}}
$$

3) $\frac{3^{2} \cdot 5^{3} \cdot 3^{5} \cdot 5^{4}}{3^{4} \cdot 5^{2}}$
4)

$\frac{5^{7} \cdot 10^{3} \cdot 5^{6} \cdot 10^{2}}{5 \cdot 10^{2} \cdot 5^{2}}$
2)

$$
\frac{7^{3} \cdot 7^{5}}{7^{2} \cdot 7^{3}}
$$

4)

$$
\frac{6^{7} \cdot \cdot^{8} \cdot 6^{4}}{6^{8} \cdot 5^{3}}
$$

6)

$$
\frac{6^{4} \cdot 7^{2} \cdot 7^{3}}{7^{4} \cdot 6^{3}}
$$

